论文标题

确保热力学一致性与可逆的粗粒

Ensuring thermodynamic consistency with invertible coarse-graining

论文作者

Chennakesavalu, Shriram, Toomer, David J., Rotskoff, Grant M.

论文摘要

粗粒模型是理论化学和生物物理学中的核心计算工具。明智地选择粗粒模型可以通过隔离决定复杂,凝结相系统的热力学特性的必要自由度来产生身体上的见解。与原子模型相比,模型的降低通常会导致降低计算成本和更有效的抽样。设计``好''粗粒模型是一门艺术。通常,映射从细粒构型到粗粒构型本身不会以任何方式优化。相反,与映射配置关联的能量函数是。在这项工作中,我们探讨了与其势能函数一起优化粗粒表示的后果。我们使用图形机学习框架将原子配置嵌入到低维空间中,以产生原始分子系统的有效表示。由于我们获得的表示不再直接解释为原子坐标的真实空间表示,因此我们还引入了反转过程和相关的热力学一致性关系,该关系使我们能够在粗粒抽样的基础上进行严格采样细粒度的配置。我们表明,这种技术是强大的,恢复了蛋白质(例如chignolin和丙氨酸二肽)中几种可观察到的前两个矩。

Coarse-grained models are a core computational tool in theoretical chemistry and biophysics. A judicious choice of a coarse-grained model can yield physical insight by isolating the essential degrees of freedom that dictate the thermodynamic properties of a complex, condensed-phase system. The reduced complexity of the model typically leads to lower computational costs and more efficient sampling compared to atomistic models. Designing ``good'' coarse-grained models is an art. Generally, the mapping from fine-grained configurations to coarse-grained configurations itself is not optimized in any way; instead, the energy function associated with the mapped configurations is. In this work, we explore the consequences of optimizing the coarse-grained representation alongside its potential energy function. We use a graph machine learning framework to embed atomic configurations into a low dimensional space to produce efficient representations of the original molecular system. Because the representation we obtain is no longer directly interpretable as a real space representation of the atomic coordinates, we also introduce an inversion process and an associated thermodynamic consistency relation that allows us to rigorously sample fine-grained configurations conditioned on the coarse-grained sampling. We show that this technique is robust, recovering the first two moments of the distribution of several observables in proteins such as chignolin and alanine dipeptide.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源