论文标题

搅拌机:多方面的多路融合不确定成对亲和力

MIXER: Multiattribute, Multiway Fusion of Uncertain Pairwise Affinities

论文作者

Lusk, Parker C., Fathian, Kaveh, How, Jonathan P.

论文摘要

我们提出了一种能够直接处理不确定成对亲和力的多路融合算法。与需要初始成对关联的现有作品相反,我们的混音器算法通过利用成对亲和力提供的其他信息来提高准确性。我们的主要贡献是一种多道路融合配方,特别适合处理非二元亲和力和一种新型的连续放松,其解决方案保证为二进制,从而避免了典型但可能有问题的溶液二进制步骤,这些步骤可能会导致不可取。对我们公式的关键见解是,它允许三种结合模式,范围从不匹配,不确定和匹配。利用此洞察力可以延迟一些数据对的融合,直到提供更多信息为止,这是将数据与多个属性/信息源融合的有效功能。我们在典型的合成数据和基准数据集上评估了混合器,并在多路匹配中显示出对技术的准确性提高,尤其是在观察冗余低的嘈杂制度中。此外,我们在停车场收集汽车的RGB数据,以演示混合器融合具有多个属性(颜色,视觉外观和边界框)的数据的能力。在这个具有挑战性的数据集中,混音器的F1精度达到了74%,比下一个最佳算法快49倍,该算法具有42%的精度。开源代码可从https://github.com/mit-acl/mixer获得。

We present a multiway fusion algorithm capable of directly processing uncertain pairwise affinities. In contrast to existing works that require initial pairwise associations, our MIXER algorithm improves accuracy by leveraging the additional information provided by pairwise affinities. Our main contribution is a multiway fusion formulation that is particularly suited to processing non-binary affinities and a novel continuous relaxation whose solutions are guaranteed to be binary, thus avoiding the typical, but potentially problematic, solution binarization steps that may cause infeasibility. A crucial insight of our formulation is that it allows for three modes of association, ranging from non-match, undecided, and match. Exploiting this insight allows fusion to be delayed for some data pairs until more information is available, which is an effective feature for fusion of data with multiple attributes/information sources. We evaluate MIXER on typical synthetic data and benchmark datasets and show increased accuracy against the state of the art in multiway matching, especially in noisy regimes with low observation redundancy. Additionally, we collect RGB data of cars in a parking lot to demonstrate MIXER's ability to fuse data having multiple attributes (color, visual appearance, and bounding box). On this challenging dataset, MIXER achieves 74% F1 accuracy and is 49x faster than the next best algorithm, which has 42% accuracy. Open source code is available at https://github.com/mit-acl/mixer.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源