论文标题
SPIDR:用于照明和变形的基于SDF的神经点字段
SPIDR: SDF-based Neural Point Fields for Illumination and Deformation
论文作者
论文摘要
神经辐射场(NERFS)最近已成为3D重建和新型观点合成的一种有希望的方法。但是,基于NERF的方法隐含地编码了形状,反射率和照明,这使用户在渲染图像中明确操纵这些属性具有挑战性。现有方法仅实现场景的有限编辑和几何形状的变形。此外,没有现有的工作能够在物体变形后准确的场景照明。在这项工作中,我们介绍了一种新的混合神经SDF表示Spidr。 SPIDR结合了点云和神经隐式表示,以使更高质量的对象表面重建几何形状变形和照明估计。对象变形和照明估计的网格和表面。为了更准确地捕获现场重新照明的环境照明,我们提出了一种新型的神经隐式模型来学习环境光。为了在变形后启用更准确的照明更新,我们使用阴影映射技术近似于几何编辑引起的光吸收性更新。我们演示了SPIDR在启用高质量几何编辑中的有效性,并更准确地更新了场景的照明。
Neural radiance fields (NeRFs) have recently emerged as a promising approach for 3D reconstruction and novel view synthesis. However, NeRF-based methods encode shape, reflectance, and illumination implicitly and this makes it challenging for users to manipulate these properties in the rendered images explicitly. Existing approaches only enable limited editing of the scene and deformation of the geometry. Furthermore, no existing work enables accurate scene illumination after object deformation. In this work, we introduce SPIDR, a new hybrid neural SDF representation. SPIDR combines point cloud and neural implicit representations to enable the reconstruction of higher quality object surfaces for geometry deformation and lighting estimation. meshes and surfaces for object deformation and lighting estimation. To more accurately capture environment illumination for scene relighting, we propose a novel neural implicit model to learn environment light. To enable more accurate illumination updates after deformation, we use the shadow mapping technique to approximate the light visibility updates caused by geometry editing. We demonstrate the effectiveness of SPIDR in enabling high quality geometry editing with more accurate updates to the illumination of the scene.