论文标题

评估应用于脑电图信号的独立组件分析的框架:对PICARD算法的测试

A Framework to Evaluate Independent Component Analysis applied to EEG signal: testing on the Picard algorithm

论文作者

Frank, Gwenevere, Makeig, Scott, Delorme, Arnaud

论文摘要

独立的组件分析(ICA)是一种盲目分离方法,越来越多地用于分离脑电图(EEG)和其他电生理记录中的大脑和非脑相关活动。它可用于提取有效的大脑源活动并估算其皮质源区域,并通常用于机器学习应用中以对脑电图进行分类。以前,我们使用22种ICA和其他盲源分离(BSS)算法比较了分解13 71通道头皮EEG数据集的结果。现在,我们正在将此框架提供给科学界,并且在发布过程中,正在测试上一个ICA算法(PICARD)未包含的ICA算法(PICARD)。我们的测试框架使用三个主要指标来评估BSS性能:头皮通道对之间的成对共同信息(PMI);分解后组件对之间保留的PMI;并且,每种算法产生的完整(不是成对的)相互信息还原(MIR)。我们还测量了分解成分的头皮投影图的“偶极性”,该组件的数量由其头皮投影映射的组件数几乎与单个等效偶极子的投影相匹配。在此框架内,PICARD的执行与Infomax ICA相似。这并不奇怪,因为PICARD是一种使用L-BFGS方法来更快收敛的信息,与使用梯度下降的Infomax和扩展Infomax(Runica)相比。我们的结果表明,PICARD的性能与Infomax相似,并且同样比其他BSS算法更好,但计算更复杂的Amica除外。我们已经通过GitHub发布了框架和测试数据的源代码。

Independent component analysis (ICA), is a blind source separation method that is becoming increasingly used to separate brain and non-brain related activities in electroencephalographic (EEG) and other electrophysiological recordings. It can be used to extract effective brain source activities and estimate their cortical source areas, and is commonly used in machine learning applications to classify EEG artifacts. Previously, we compared results of decomposing 13 71-channel scalp EEG datasets using 22 ICA and other blind source separation (BSS) algorithms. We are now making this framework available to the scientific community and, in the process of its release are testing a recent ICA algorithm (Picard) not included in the previous assay. Our test framework uses three main metrics to assess BSS performance: Pairwise Mutual Information (PMI) between scalp channel pairs; PMI remaining between component pairs after decomposition; and, the complete (not pairwise) Mutual Information Reduction (MIR) produced by each algorithm. We also measure the "dipolarity" of the scalp projection maps for the decomposed component, defined by the number of components whose scalp projection maps nearly match the projection of a single equivalent dipole. Within this framework, Picard performed similarly to Infomax ICA. This is not surprising since Picard is a type of Infomax algorithm that uses the L-BFGS method for faster convergence, in contrast to Infomax and Extended Infomax (runica) which use gradient descent. Our results show that Picard performs similarly to Infomax and, likewise, better than other BSS algorithms, excepting the more computationally complex AMICA. We have released the source code of our framework and the test data through GitHub.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源