论文标题

在旋转Anharmonic陷阱中,有吸引力的玻色气的基态

Ground States of Attractive Bose Gases in Rotating Anharmonic Traps

论文作者

Guo, Yujin, Li, Yan, Luo, Yong

论文摘要

本文涉及限制在Anharmonic陷阱$ V(x)=ω(| x |^2+k | x |^4)$上以速度$ω> 0 $旋转的吸引力的bose气体的基态,其中$ω> 0 $表示陷阱频率,$ k> 0 $代表了激烈的术语的强度。众所周知,对于任何$ω> 0 $,当且仅当$ 0 <a <a^*$,其中$ a^*:= \ | q \ |^{2} _ {2} $和$ q> 0 $是$ q+q^q+q^{3} = 0 $ in $ n $ in $ \ bb^2 $ n $ n $ n $ n $^2 $ {rbb {c^2通过分析基态的精致能量和扩展,我们证明存在常数$ c> 0 $,独立于$ 0 <a <a^*$,因此基态在$ r(a)中没有任何涡流: c(a^* - a)^{ - \ frac {1-6β} {20}} \ big \} $ as $ a \ nearrow a^*$,对于$ ch = \ frac {3Ω^2} {4} {4} {4} {4} $,$ k = \ frac {1} $ k = \ frac {1} $ {1} $ $ω= c_0(a^* - a)^{ - β} $在[0,\ frac {1} {6} {6})$和$ c_0> 0 $的$β\中有所不同。

This paper is concerned with ground states of attractive Bose gases confined in an anharmonic trap $V(x)=ω(|x|^2+k|x|^4)$ rotating at the velocity $Ω>0$, where $ω>0$ denotes the trapping frequency, and $k>0$ represents the strength of the quartic term. It is known that for any $Ω>0$, ground states exist in such traps if and only if $0<a<a^*$, where $a^*:=\|Q\|^{2}_{2}$ and $Q>0$ is the unique positive solution of $ΔQ-Q+Q^{3}=0$ in $\mathbb{R}^2$. By analyzing the refined energies and expansions of ground states, we prove that there exists a constant $C>0$, independent of $0<a<a^*$, such that ground states do not have any vortex in the region $R(a):=\big\{x\in\mathbb{R}^2:\, |x|\leq C(a^*-a)^{-\frac{1-6β}{20}}\big\}$ as $a\nearrow a^*$, for the case where $ω=\frac{3Ω^2}{4}$, $k=\frac{1}{6}$, and $Ω=C_0(a^*-a)^{-β}$ varies for some $β\in [0,\frac{1}{6})$ and $C_0>0$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源