论文标题

数据驱动的多尺度建模和与不确定性定量的复合结构的鲁棒优化

Data-driven multi-scale modeling and robust optimization of composite structure with uncertainty quantification

论文作者

Kobayashi, Kazuma, Usman, Shoaib, Castano, Carlos, Kumar, Dinesh, Alam, Syed

论文摘要

重要的是,在将效果转换为组件和/或系统水平(宏观层面)的同时,将材料的特性准确地对材料的特性进行建模,可以显着减少开发新技术所需的实验量。需要在不确定性下使用基于机器学习的多尺度建模和强大的优化,对恶劣环境的燃料和结构性性能进行稳健性分析(例如电源上升反应堆系统或航空航天应用)。纤维和基质材料特性是微观尺度上不确定性的潜在来源。复合层的堆叠序列(堆叠和层厚度的角度)会导致间尺度的不确定性。宏观不确定性也可能来自系统属性,例如负载或初始条件。本章展示了先进的数据驱动方法,并概述了为高级复合材料的多规模建模必须开发/添加的特定功能。本章提出了一种基于由替代模型/模拟器驱动的有限元方法(FEM)模拟的复合结构的多尺度建模方法,该模拟基于微结构知情的中尺度材料模型,以研究使用机器学习方法研究操作参数/不确定性的影响。为了确保最佳的复合材料,使用数据驱动的数值算法优化了相对于初始材料体积分数的复合性能。

It is important to accurately model materials' properties at lower length scales (micro-level) while translating the effects to the components and/or system level (macro-level) can significantly reduce the amount of experimentation required to develop new technologies. Robustness analysis of fuel and structural performance for harsh environments (such as power uprated reactor systems or aerospace applications) using machine learning-based multi-scale modeling and robust optimization under uncertainties are required. The fiber and matrix material characteristics are potential sources of uncertainty at the microscale. The stacking sequence (angles of stacking and thickness of layers) of composite layers causes meso-scale uncertainties. It is also possible for macro-scale uncertainties to arise from system properties, like the load or the initial conditions. This chapter demonstrates advanced data-driven methods and outlines the specific capability that must be developed/added for the multi-scale modeling of advanced composite materials. This chapter proposes a multi-scale modeling method for composite structures based on a finite element method (FEM) simulation driven by surrogate models/emulators based on microstructurally informed meso-scale materials models to study the impact of operational parameters/uncertainties using machine learning approaches. To ensure optimal composite materials, composite properties are optimized with respect to initial materials volume fraction using data-driven numerical algorithms.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源