论文标题

编程物理知识的神经网络的计算固体力学简介

An introduction to programming Physics-Informed Neural Network-based computational solid mechanics

论文作者

Bai, Jinshuai, Jeong, Hyogu, Batuwatta-Gamage, C. P., Xiao, Shusheng, Wang, Qingxia, Rathnayaka, C. M., Alzubaidi, Laith, Liu, Gui-Rong, Gu, Yuantong

论文摘要

物理信息神经网络(PINN)最近对计算力学的兴趣越来越大。在这项工作中,我们介绍了基于PINN的计算固体力学的详细介绍。此外,总结了基于PINN的两个广泛使用的物理信息损失功能。此外,提出了从1D到3D实心问题的数值示例,以显示基于PINN的计算固体力学的性能。这些程序是通过Python编码语言和带有分步说明的TensorFlow库构建的。值得强调的是,基于Pinn的计算机制易于实施,并且可以扩展到更具挑战性的应用程序。这项工作旨在帮助对基于Pinn的固体机械求解器感兴趣的研究人员对这一新兴领域有清晰的见解。本工作中提供的所有数值示例的程序可在https://github.com/jinshuaibai/pinn_comp_mech上获得。

Physics-informed neural network (PINN) has recently gained increasing interest in computational mechanics. In this work, we present a detailed introduction to programming PINN-based computational solid mechanics. Besides, two prevailingly used physics-informed loss functions for PINN-based computational solid mechanics are summarised. Moreover, numerical examples ranging from 1D to 3D solid problems are presented to show the performance of PINN-based computational solid mechanics. The programs are built via Python coding language and TensorFlow library with step-by-step explanations. It is worth highlighting that PINN-based computational mechanics is easy to implement and can be extended for more challenging applications. This work aims to help the researchers who are interested in the PINN-based solid mechanics solver to have a clear insight into this emerging area. The programs for all the numerical examples presented in this work are available on https://github.com/JinshuaiBai/PINN_Comp_Mech.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源