论文标题

$θ\ in(0,(n-1)/n] $

Non-quadratic Euclidean complete affine maximal type hypersurfaces for $θ\in(0,(N-1)/N]$

论文作者

Du, Shi-Zhong

论文摘要

Bernstein仿射最大类型方程的问题\ begin {equination} \ label {e0.1} u^{ij} d_ {ij} w = 0,\ \ w \ equiv [\ det d^2U] \ end {equation}一直是仿射几何形状的核心问题。首先,Chern提出了一个猜想(日本 - 日本国家的SEM。,东京,1977年,17-30),以延长Trudinger-Wang(发明的Math。在$ {\ mathbb {r}}}}^{n+1} $中必须是椭圆抛物面。同时,Trudinger-Wang完全解决了该猜想的尺寸$ n = 2 $和$θ= 3/4 $,然后由Jia-li(结果数学,{\ bf56} 2009,1009-139)扩展到$ n = 2,θ\ in(in(3/4,4,4,1] $),请参见zhou(bf)。 25-44)在过去的二十年中,在更高的维度问题上做了很多努力,但实际上并没有真正成功,即使在dimension $ n = 3 $的情况下,在\ cite {du2}中都发现了反对。 $θ\ in(1/2,(N-1)/N)$使用更复杂的参数,我们将明确构建各种新的Euclidean全新欧亲态最大型高空超过,这些高度呈椭圆形抛物面,以改善范围

Bernstein problem for affine maximal type equation \begin{equation}\label{e0.1} u^{ij}D_{ij}w=0, \ \ w\equiv[\det D^2u]^{-θ},\ \ \forall x\inΩ\subset{\mathbb{R}}^N \end{equation} has been a core problem in affine geometry. A conjecture proposed firstly by Chern (Proc. Japan-United States Sem., Tokyo, 1977, 17-30) for entire graph and then extended by Trudinger-Wang (Invent. Math., {\bf140}, 2000, 399-422) to its full generality asserts that any Euclidean complete, affine maximal type, locally uniformly convex $C^4$-hypersurface in ${\mathbb{R}}^{N+1}$ must be an elliptic paraboloid. At the same time, this conjecture was solved completely by Trudinger-Wang for dimension $N=2$ and $θ=3/4$, and later extended by Jia-Li (Results Math., {\bf56} 2009, 109-139) to $N=2, θ\in(3/4,1]$ (see also Zhou (Calc. Var. PDEs., {\bf43} 2012, 25-44) for a different proof). On the past twenty years, much efforts were done toward higher dimensional issues but not really successful yet, even for the case of dimension $N=3$. Recently, counter examples were found in \cite{Du2} (J. Differential Equations, {\bf269} (2020), 7429-7469) for $N\geq3$ and $θ\in(1/2,(N-1)/N)$ using a much more complicated argument. In this paper, we will construct explicitly various new Euclidean complete affine maximal type hypersurfaces which are not elliptic paraboloid for the improved range $$N\geq2, \ \ θ\in(0,(N-1)/N].$$

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源