论文标题
开发糖尿病性视网膜病分析框架以克服数据稀缺的技巧
Bag of Tricks for Developing Diabetic Retinopathy Analysis Framework to Overcome Data Scarcity
论文作者
论文摘要
最近,使用超宽光学相干层析成像血管造影(UW-OCTA)的糖尿病性视网膜病(DR)筛查已用于临床实践中,以检测早期DR的迹象。但是,由于数据收集的难度和缺乏公共数据集的困难,使用UW-OCTA图像开发基于深度学习的DR分析系统并不是微不足道的。通过现实的约束,在小型数据集上训练的模型可能会获得低于PAR的性能。因此,为了帮助眼科医生对模型的不正确决策的混淆,即使在数据稀缺设置中,模型也应该是可靠的。为了解决上述实际挑战,我们提出了一项针对DR分析任务的综合实证研究,包括病变细分,图像质量评估和DR分级。对于每项任务,我们通过利用集合学习,数据增强和半监督学习来介绍强大的培训计划。此外,我们提出了可靠的伪标记,该标签根据模型的置信度评分排除了不确定的伪标签,以减少嘈杂的伪标签的负面影响。通过利用所提出的方法,我们在糖尿病性视网膜病变分析挑战中获得了第一名。
Recently, diabetic retinopathy (DR) screening utilizing ultra-wide optical coherence tomography angiography (UW-OCTA) has been used in clinical practices to detect signs of early DR. However, developing a deep learning-based DR analysis system using UW-OCTA images is not trivial due to the difficulty of data collection and the absence of public datasets. By realistic constraints, a model trained on small datasets may obtain sub-par performance. Therefore, to help ophthalmologists be less confused about models' incorrect decisions, the models should be robust even in data scarcity settings. To address the above practical challenging, we present a comprehensive empirical study for DR analysis tasks, including lesion segmentation, image quality assessment, and DR grading. For each task, we introduce a robust training scheme by leveraging ensemble learning, data augmentation, and semi-supervised learning. Furthermore, we propose reliable pseudo labeling that excludes uncertain pseudo-labels based on the model's confidence scores to reduce the negative effect of noisy pseudo-labels. By exploiting the proposed approaches, we achieved 1st place in the Diabetic Retinopathy Analysis Challenge.