论文标题

部分可观测时空混沌系统的无模型预测

Configuration interaction based nonequilibrium steady state impurity solver

论文作者

Werner, D., Lotze, J., Arrigoni, E.

论文摘要

我们提出了一个基于所谓的辅助主方程方法(AMEA)和配置相互作用扩展的组合,提出了一个相关的杂质问题的求解器。在AMEA中,将原始杂质模型映射到具有限制数量的浴场位点的辅助开放量子系统上,可以通过数值多体方法来解决,例如兰克索斯/Arnoldi精确对角化(ED)或矩阵乘积状态(MPS)。尽管随着浴场数量的增加,映射变得更加准确,但由于开放系统的希尔伯特空间尺寸的快速增加,ED实现受到严重限制,而MPS求解器通常需要长时间的运行时间。在这里,我们建议采用通过主动空间扩展的配置交互方法增强的配置交互方法,以数字求解相关的辅助开放量子系统。这允许比普通ED访问更低的计算成本的大量浴场。我们通过数值重归其化组基准测试该方法可导致平衡和MPS均衡。特别是,我们评估了电流,电导以及近托峰及其分裂,这是增加偏置电压以下近相比TK以下的偏置电压的函数。我们获得了电导率的相当准确的缩放,这是TK在广泛参数中进行中度至强相互作用的偏置电压和温度的函数。该方法将ED的快速运行时间与MPS实现的快速运行时间结合在一起,使其成为非平衡动态平均场理论的有吸引力的求解器。

We present a solver for correlated impurity problems out of equilibrium based on a combination of the so-called auxiliary master equation approach (AMEA) and the configuration interaction expansion. Within AMEA one maps the original impurity model onto an auxiliary open quantum system with a restricted number of bath sites which can be addressed by numerical many-body approaches such as Lanczos/Arnoldi exact diagonalization (ED) or matrix product states (MPS). While the mapping becomes exponentially more accurate with increasing number of bath sites, ED implementations are severely limited due to the fast increase of the Hilbert space dimension for open systems, and the MPS solver typically requires rather long runtimes. Here, we propose to adopt a configuration interaction approach augmented by active space extension to solve numerically the correlated auxiliary open quantum system. This allows access to a larger number of bath sites at lower computational costs than for plain ED. We benchmark the approach with numerical renormalization group results in equilibrium and with MPS out of equilibrium. In particular, we evaluate the current, the conductance as well as the Kondo peak and its splitting as a function of increasing bias voltage below the Kondo temperature TK. We obtain a rather accurate scaling of the conductance as a function of the bias voltage and temperature rescaled by TK for moderate to strong interactions in a wide range of parameters. The approach combines the fast runtime of ED with an accuracy close to the one achieved by MPS making it an attractive solver for nonequilibrium dynamical mean field theory.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源