论文标题

粗粒排名的分层多关系联合网络

Hierarchical Multi-Interest Co-Network For Coarse-Grained Ranking

论文作者

Yuan, Xu, Xu, Chen, Chen, Qiwei, Zhuang, Tao, Chen, Hongjie, Li, Chao, Ge, Junfeng

论文摘要

在这个信息爆炸时代,个性化的推荐系统很方便,以便用户获得他们感兴趣的信息。要处理数十亿个用户和项目,大规模的在线推荐服务通常包括三个阶段:候选人生成,粗粒度排名和良好的排名。每个阶段的成功取决于模型是否准确捕获了用户的兴趣,这些用户通常隐藏在用户行为数据中。先前的研究表明,用户的兴趣是多种多样的,一个向量不足以捕获用户的不同偏好。因此,许多方法使用多个向量来编码用户的兴趣。但是,有两个未解决的问题:(1)现有方法中不同向量的相似性太高,信息过多。因此,用户的利益并未完全代表。 (2)现有方法将长期和短期行为融合在一起,忽略了它们之间的差异。本文提出了一个分层多联系共同网络(HCN),以捕获用户在粗粒度排名阶段的多样性兴趣。具体而言,我们设计了一个分层多功能提取层,以迭代地更新用户的各种兴趣中心。以这种方式获得的多个嵌入式向量包含更多信息,并在各个方面更好地代表用户的利益。此外,我们开发了一个共同利益网络,以整合用户的长期和短期利益。在几个现实世界数据集和一个大规模工业数据集上进行的实验表明,HCN有效地超过了最先进的方法。我们将HCN部署到大型现实世界电子商务系统中,并在GMV(总商品价值)上取得额外的2.5 \%改进。

In this era of information explosion, a personalized recommendation system is convenient for users to get information they are interested in. To deal with billions of users and items, large-scale online recommendation services usually consist of three stages: candidate generation, coarse-grained ranking, and fine-grained ranking. The success of each stage depends on whether the model accurately captures the interests of users, which are usually hidden in users' behavior data. Previous research shows that users' interests are diverse, and one vector is not sufficient to capture users' different preferences. Therefore, many methods use multiple vectors to encode users' interests. However, there are two unsolved problems: (1) The similarity of different vectors in existing methods is too high, with too much redundant information. Consequently, the interests of users are not fully represented. (2) Existing methods model the long-term and short-term behaviors together, ignoring the differences between them. This paper proposes a Hierarchical Multi-Interest Co-Network (HCN) to capture users' diverse interests in the coarse-grained ranking stage. Specifically, we design a hierarchical multi-interest extraction layer to update users' diverse interest centers iteratively. The multiple embedded vectors obtained in this way contain more information and represent the interests of users better in various aspects. Furthermore, we develop a Co-Interest Network to integrate users' long-term and short-term interests. Experiments on several real-world datasets and one large-scale industrial dataset show that HCN effectively outperforms the state-of-the-art methods. We deploy HCN into a large-scale real world E-commerce system and achieve extra 2.5\% improvements on GMV (Gross Merchandise Value).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源