论文标题

用于进攻二进制的参数化后源后框架

Parameterized Post-Einsteinian Framework for Precessing Binaries

论文作者

Loutrel, Nicholas, Pani, Paolo, Yunes, Nicolás

论文摘要

总体而言,孤立的黑洞遵守无头发定理,该定理固定了其外部时空的多极结构。但是,在修饰的重力中,或当紧凑的物体不是黑洞时,外部时空可能具有不同的多极结构。当两个黑洞在二元中时,这种多极结构决定了轨道和旋转进动的动力学的形态。反过来,通过特定的振幅和相位调制,通过灵感紧凑的二进制二进制发出的进攻动力学印记到引力波。因此,这些振幅和相位调制的检测和表征可以改善对具有重力波的基本物理的约束。最近,在两种情况下计算了分析进攻波形:(i)违反无头发定理的动力学chern-simons重力,以及(ii)具有通用质量四倍矩的变形紧凑物体。在这项工作中,我们使用这两个示例提出了参数化的后源〜(PPE)框架的扩展,以包括进动效果。新框架包含$ 2N $ PPE参数$(\ Mathscr {b}^{\ rm PPE} _ {(m',n)},b^{\ rm ppe} _ {(m',m',n)} $ for wave forave ppeform forave the wave ppeform forave ppeform easpe at t wave ppeform easpe a ppe阶段和$ 2n $ ppe ppe pmaters $(a a $ ppe paramets $ {\ a。 ppe} _ {(m',n)},a^{\ rm ppe} _ {(m',n)})$用于波形振幅。 PPE校正的数量$ n $的数量对应于在将截短的PPE波形与确切的PPE波形进行比较时,达到给定的可能性阈值所需的最小谐波数,而$(m',n)$对应于含有PPE参数的谐音的谐波数量。我们明确地展示了这些PPE参数如何映射到上面讨论的特定示例波形。所提出的PPE框架可以作为将来对进攻二进制的重力波进行一般相对性测试的基础。

In general relativity, isolated black holes obey the no hair theorems, which fix the multipolar structure of their exterior spacetime. However, in modified gravity, or when the compact objects are not black holes, the exterior spacetime may have a different multipolar structure. When two black holes are in a binary, this multipolar structure determines the morphology of the dynamics of orbital and spin precession. In turn, the precession dynamics imprint onto the gravitational waves emitted by an inspiraling compact binary through specific amplitude and phase modulations. The detection and characterization of these amplitude and phase modulations can therefore lead to improved constraints on fundamental physics with gravitational waves. Recently, analytic precessing waveforms were calculated in two scenarios: (i) dynamical Chern-Simons gravity, where the no-hair theorems are violated, and (ii) deformed compact objects with generic mass quadrupole moments. In this work, we use these two examples to propose an extension of the parameterized post-Einsteinian~(ppE) framework to include precession effects. The new framework contains $2n$ ppE parameters $(\mathscr{b}^{\rm ppE}_{(m',n)}, b^{\rm ppE}_{(m',n)})$ for the waveform phase, and $2n$ ppE parameters $(\mathscr{a}^{\rm ppE}_{(m',n)}, a^{\rm ppE}_{(m',n)})$ for the waveform amplitudes. The number of ppE corrections $n$ corresponds to the minimum number of harmonics necessary to achieve a given likelihood threshold when comparing the truncated ppE waveform with the exact one, and $(m',n)$ corresponds to the harmonic numbers of the harmonics containing ppE parameters. We show explicitly how these ppE parameters map to the specific example waveforms discussed above. The proposed ppE framework can serve as a basis for future tests of general relativity with gravitational waves from precessing binaries.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源