论文标题
矩阵凸的反省和量子熵的强度
Ruminations on Matrix Convexity and the Strong Subadditivity of Quantum Entropy
论文作者
论文摘要
熟悉的第二个衍生化测试与凸的结合结合结合了分辨率,可为研究凸矩阵值函数的研究产生有用的工具。我们证明了这种方法在该领域的许多定理上的适用性。这些包括凸性原理,这些原理在Lieb-Ruskai证明量子熵的强度下的证据中起着至关重要的作用。
The familiar second derivative test for convexity, combined with resolvent calculus, is shown to yield a useful tool for the study of convex matrix-valued functions. We demonstrate the applicability of this approach on a number of theorems in this field. These include convexity principles which play an essential role in the Lieb-Ruskai proof of the strong subadditivity of quantum entropy.