论文标题
混合离子 - 电子传导聚合物中稳定的离子可抗抗极性的启用生物逼真的人工神经元
Stable ion-tunable antiambipolarity in mixed ion-electron conducting polymers enables biorealistic artificial neurons
论文作者
论文摘要
生物整合的神经形态系统有望记录和调节生物系统信号的新方案。使这种人工神经回路成功需要最小的电路复杂性和类似于生物学的基于离子的工作机制。然而,通常在硅或有机半导体神经形态系统中通常实现的简单泄漏的集成模型神经元只能模仿一些神经特征。基于传统的基于SI基的互补 - 氧化氧化 - 氧化 - 氧化 - 氧化物 - 氧化物 - 氧化物 - 氧化物 - 氧化物 - 氧化物 - 氧化物 - 耐药性(NDR)设备电路的功能性神经元模型非常复杂,而不是生物相容性,并且缺乏基于离子和化学的模型特征。在这里,我们报告了一种基于生物电导的有机电化学神经元(C-OECN),该神经元(C-OECN)使用具有可靠的离子可触摸抗杀伤性的混合离子电子传导梯子型聚合物。后者用于模仿Na通道的激活/失活以及生物神经元K通道的延迟激活。然后,这些C-OECN可以在接近100 Hz的可生物浮游频率上尖峰,模仿最关键的生物学神经特征,显示随机尖峰,并启用神经递质和基于Ca2+的尖峰调制。使用以前的技术无法实现这些组合功能。
Bio-integrated neuromorphic systems promise for new protocols to record and regulate the signaling of biological systems. Making such artificial neural circuits successful requires minimal circuit complexity and ion-based operating mechanisms similar to that of biology. However, simple leaky integrate-and-fire model neurons, commonly realized in either silicon or organic semiconductor neuromorphic systems, can emulate only a few neural features. More functional neuron models, based on traditional complex Si-based complementary-metal-oxide-semiconductor (CMOS) or negative differential resistance (NDR) device circuits, are complicated to fabricate, not biocompatible, and lack ion- and chemical-based modulation features. Here we report a biorealistic conductance-based organic electrochemical neuron (c-OECN) using a mixed ion-electron conducting ladder-type polymer with reliable ion-tunable antiambipolarity. The latter is used to emulate the activation/inactivation of Na channels and delayed activation of K channels of biological neurons. These c-OECNs can then spike at bioplausible frequencies nearing 100 Hz, emulate most critical biological neural features, demonstrate stochastic spiking, and enable neurotransmitter and Ca2+-based spiking modulation. These combined features are impossible to achieve using previous technologies.