论文标题

来自现实世界稀疏测量的推断

Inference from Real-World Sparse Measurements

论文作者

Pannatier, Arnaud, Matoba, Kyle, Fleuret, François

论文摘要

现实世界中的问题通常涉及复杂且非结构化的测量集,这些测量值将传感器稀疏地放置在空间或时间上时发生。能够对这种不规则的时空数据进行建模并提取有意义的预测至关重要。深度学习体系结构能够处理的测量集以随着设置而异,并且在任何地方提取读数在方法上都是困难的。当前的最新模型是图形神经网络,需要特定于域的知识才能进行适当的设置。 我们提出了一个基于注意力的模型,该模型侧重于鲁棒性和实践适用性,并提供两个关键的设计贡献。首先,我们采用类似于VIT的变压器,将上下文点和读出位置作为输入,消除了对编码器编码器结构的需求。其次,我们使用统一的方法来编码上下文和读取位置。这种方法有意直接,并与其他系统很好地集成。与现有方法相比,我们的模型更简单,需要较少的专业知识,并且不遭受有问题的瓶颈效应的困扰,所有这些效果都会导致卓越的性能。 我们进行了深入的消融研究,这些研究表征了这种有问题的瓶颈,这些替代模型的潜在表示,这些模型抑制信息利用并阻碍了训练效率。我们还跨各种问题领域进行实验,包括高空风现象,为期两天的天气预测,流体动力学和热量扩散。我们基于注意力的模型在处理不规则采样数据时始终优于最先进的模型。值得注意的是,我们的模型可将WIND的均方根误差(RMSE)从9.24减少到7.98,而对热扩散任务则将其从0.126减少到0.084。

Real-world problems often involve complex and unstructured sets of measurements, which occur when sensors are sparsely placed in either space or time. Being able to model this irregular spatiotemporal data and extract meaningful forecasts is crucial. Deep learning architectures capable of processing sets of measurements with positions varying from set to set, and extracting readouts anywhere are methodologically difficult. Current state-of-the-art models are graph neural networks and require domain-specific knowledge for proper setup. We propose an attention-based model focused on robustness and practical applicability, with two key design contributions. First, we adopt a ViT-like transformer that takes both context points and read-out positions as inputs, eliminating the need for an encoder-decoder structure. Second, we use a unified method for encoding both context and read-out positions. This approach is intentionally straightforward and integrates well with other systems. Compared to existing approaches, our model is simpler, requires less specialized knowledge, and does not suffer from a problematic bottleneck effect, all of which contribute to superior performance. We conduct in-depth ablation studies that characterize this problematic bottleneck in the latent representations of alternative models that inhibit information utilization and impede training efficiency. We also perform experiments across various problem domains, including high-altitude wind nowcasting, two-day weather forecasting, fluid dynamics, and heat diffusion. Our attention-based model consistently outperforms state-of-the-art models in handling irregularly sampled data. Notably, our model reduces the root mean square error (RMSE) for wind nowcasting from 9.24 to 7.98 and for heat diffusion tasks from 0.126 to 0.084.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源