论文标题
搜索热恒星冠状
A search for thermal gyro-synchrotron emission from hot stellar coronae
论文作者
论文摘要
我们从五个无线电恒星的样品中搜索了热陀螺仪同时发生的无线电发射,其X射线冠状冠包含热($ t_e> 10^7 $ k)热成分。我们使用JVLA在频率范围15--45 GHz的频率范围内测量Stokes I和V/I光谱分布(SEDS),从而确定使用PowerLaw和热陀螺仪同步型发射模型的最佳拟合模型参数。三种色球活性二进制(Algol,ux arietis,hr 1099)的SED良好,是由幂律陀螺仪模型拟合的,没有热成分的证据。然而,两个弱衬有T型Tauri恒星(V410 Tau,HD 283572)的SED具有高于30 GHz的圆极化增强,这与纯幂律分布不一致。这些光谱是通过概括性的冠状旋转旋转体积的发射良好的,并且具有热等离子体和更强的磁场发射热陀螺连与辐射的磁场较小的区域。我们使用贝叶斯推断来估计发射区域的物理等离子体参数(特征大小,电子密度,温度,幂律指数和磁场强度和方向),使用独立测量的无线电尺寸,X射线亮度和磁场强度作为priors,并在可用的情况下。派生的参数受到了良好的约束,但有些退化。预序列恒星中的幂律和热量可能不是共同空间的,我们推测它们可能来自两个不同的区域:发生重新连接的纠结场磁层和最近发现的轴对称环形磁场。
We searched for thermal gyro-synchrotron radio emission from a sample of five radio-loud stars whose X-ray coronae contain a hot ($T_e>10^7$ K) thermal component. We used the JVLA to measure Stokes I and V/I spectral energy distributions (SEDs) over the frequency range 15--45 GHz, determining the best-fitting model parameters using power-law and thermal gyro-synchrotron emission models. The SEDs of the three chromospherically active binaries (Algol, UX Arietis, HR 1099) were well-fit by a power-law gyro-synchrotron model, with no evidence for a thermal component. However, the SEDs of the two weak-lined T Tauri stars (V410 Tau, HD 283572) had a circularly polarized enhancement above 30 GHz that was inconsistent with a pure power-law distribution. These spectra were well-fit by summing the emission from an extended coronal volume of power-law gyro-synchrotron emission and a smaller region with thermal plasma and a much stronger magnetic field emitting thermal gyro-synchrotron radiation. We used Bayesian inference to estimate the physical plasma parameters of the emission regions (characteristic size, electron density, temperature, power-law index, and magnetic field strength and direction) using independently measured radio sizes, X-ray luminosities, and magnetic field strengths as priors, where available. The derived parameters were well-constrained but somewhat degenerate. The power-law and thermal volumes in the pre-main-sequence stars are probably not co-spatial, and we speculate they may arise from two distinct regions: a tangled-field magnetosphere where reconnection occurs and a recently discovered axisymmetric toroidal magnetic field, respectively.