论文标题
$ 2D $黑洞的弦乐理论的微晶格
Microstates of a $2d$ Black Hole in string theory
论文作者
论文摘要
我们在包含非单词状态的双缩放限制中分析基质量子力学的模型。此类系统的有限温度分区函数包含非平凡的绕组模式(涡旋),并以表示代表的理论总和来表示。然后,我们将重点放在第一个绕组模式占主导地位的情况下(Kazakov-Kostov-Kutasov的模型)。在大型表示的极限(连续的年轻图)中,并且取决于模型参数的值,例如紧凑型半径和弦耦合,双几何背景对应于长字符串(绕组模式)凝结物或$ 2d $(非subersymmetricric)黑洞的值。在矩阵模型中,我们可以调整这些参数并探索各种阶段和制度。我们的构建使我们能够确定这些背景的微晶格的起源,这是由非微不足道表示产生的,并为计算它们上各种可观察到的方式铺平了道路。
We analyse models of Matrix Quantum Mechanics in the double scaling limit that contain non-singlet states. The finite temperature partition function of such systems contains non-trivial winding modes (vortices) and is expressed in terms of a group theoretic sum over representations. We then focus in the case when the first winding mode is dominant (model of Kazakov-Kostov-Kutasov). In the limit of large representations (continuous Young diagrams), and depending on the values of the parameters of the model such as the compactification radius and the string coupling, the dual geometric background corresponds to that of a long string (winding mode) condensate or a $2d$ (non-supersymmetric) Black Hole. In the matrix model we can tune these parameters and explore various phases and regimes. Our construction allows us to identify the origin of the microstates of these backgrounds, arising from non trivial representations, and paves the way for computing various observables on them.