论文标题
非线性触发器量子穿过潜在的障碍
Nonlinear flip-flop quantum walks through potential barriers
论文作者
论文摘要
研究了具有振幅依赖相移的非线性触发器量子步行的动力学,并研究了势势垒。通过统一局部扰动与介质的Kerrlike非线性之间的调整,我们发现了一组丰富的动态曲线。我们将展示不同的Hadamard量子步行制度的存在,包括具有移动孤子状结构或自被捕状态的量子。后者主要是倾向于$φ\rightarrowπ/2 $的振动扰动。在此系统中,量子量显示出异常的行为,因为我们增加了潜在屏障的振幅,并且相对于非线性参数,自捕获$φ_C$的单调减小。混乱的状态成为中间非线性值的占主导地位。此外,我们表明,通过更改量子硬币($θ$),出现了一个非平凡的动态,靠近Pauli-X的硬币将系统驱动到具有类似独奏的型结构的政权,而混乱的行为仅限于$χ$ -Um $ $φ$ $的狭窄区域。我们认为,可以在集成的光子系统中实施和观察该模型的所有权。
The dynamics of nonlinear flip-flop quantum walk with amplitude-dependent phase shifts with pertubing potential barrier is investigated. Through the adjustment between uniform local perturbations and a Kerrlike nonlinearity of the medium we find a rich set of dynamic profiles. We will show the existence of different Hadamard quantum walking regimes, including those with mobile soliton-like structures or self-trapped states. The latter is predominant for perturbations with amplitudes that tend to $φ\rightarrow π/2$. In this system, the qubit shows an unusual behavior as we increase the amplitudes of the potential barriers, and displays a monotonic decrease in the self-trapping $φ_c$ with respect to the nonlinear parameter. A chaotic-like regime becomes predominant for intermediate nonlinearity values. Furthermore, we show that by changing the quantum coins ($θ$) a non-trivial dynamic arises, where coins close to Pauli-X drives the system to a regime with predominant soliton-like structures, while the chaotic behavior are restricted to a narrow region in the $χ$-$φ$ plane. We believe that is possible to implement and observe the proprieties of this model in a integrated photonic system.