论文标题
基于指纹的MMWave定位系统通过可重新配置的智能表面有助于
Fingerprint Based mmWave Positioning System Aided by Reconfigurable Intelligent Surface
论文作者
论文摘要
可重构智能表面(RIS)是毫米波(MMWave)定位系统的有前途的技术。在本文中,我们考虑了由RIS辅助的多输入多输出(MIMO)时间划分双工(TDD)MMWAVE系统中的多个移动用户(MUS)定位问题。我们将时空通道响应矢量(STCRV)作为一种新型指纹类型得出表达。 STCRV由多径通道特性,例如时间延迟和到达角度(AOA)组成,这与MU的位置有关。通过使用STCRV作为输入,我们提出了一种新型的残留卷积网络回归(RCNR)学习算法来输出MU的估计三维(3D)位置。具体而言,RCNR学习算法包括一个数据处理块来处理输入STCRV,一个正常的卷积块,以提取STCRV的特征,四个残留卷积块,以进一步提取功能并保护特征的完整性,以及一个回归块以估算3D位置。还提出了广泛的仿真结果,以证明所提出的RCNR学习算法优于传统的卷积神经网络(CNN)。
Reconfigurable intelligent surface (RIS) is a promising technique for millimeter wave (mmWave) positioning systems. In this paper, we consider multiple mobile users (MUs) positioning problem in the multiple-input multiple-output (MIMO) time-division duplex (TDD) mmWave systems aided by the RIS. We derive the expression for the space-time channel response vector (STCRV) as a novel type of fingerprint. The STCRV consists of the multipath channel characteristics, e.g., time delay and angle of arrival (AOA), which is related to the position of the MU. By using the STCRV as input, we propose a novel residual convolution network regression (RCNR) learning algorithm to output the estimated three-dimensional (3D) position of the MU. Specifically, the RCNR learninng algorithm includes a data processing block to process the input STCRV, a normal convolution block to extract the features of STCRV, four residual convolution blocks to further extract the features and protect the integrity of the features, and a regression block to estimate the 3D position. Extensive simulation results are also presented to demonstrate that the proposed RCNR learning algorithm outperforms the traditional convolution neural network (CNN).