论文标题
连贯的光学两光子共振层析成像在三个维度
Coherent optical two-photon resonance tomographic imaging in three dimensions
论文作者
论文摘要
磁共振成像是一种三维成像技术,其中磁场的梯度用于询问具有空间分辨率的自旋共振。该技术在探测原子与良好三维分辨率的一致性方面的应用是一个挑战性的应用。我们提出并演示了一种光学方法,可以通过两光子拉曼过渡探测旋转共振,重建了原子集合的连贯性的3D结构,该结构本身受外部场的影响。我们的方法依赖于单个时间和空间分辨的杂作测量,从而重建了复杂的3D相干曲线。由于光学接口,我们达到了$ 14 \ times14 \ times36 $ $ $ $ $ mathrm {m}^3 $的层析成像图像分辨率。该技术允许探测具有共振结构的任何透明介质,并为基于原子的量子信息协议提供了强大的诊断工具。因此,它是一种可行的技术,用于用于电磁场的磁力测定法,电图和成像。
Magnetic resonance imaging is a three-dimensional imaging technique, where a gradient of the magnetic field is used to interrogate spin resonances with spatial resolution. The application of this technique to probe the coherence of atoms with good three-dimensional resolution is a challenging application. We propose and demonstrate an optical method to probe spin resonances via a two-photon Raman transition, reconstructing the 3D-structure of an atomic ensemble's coherence, which is itself subject to external fields. Our method relies on a single time-and-space resolved heterodyne measurement, allowing the reconstruction of a complex 3D coherence profile. Owing to the optical interface, we reach a tomographic image resolution of $14\times14\times36$ $μ\mathrm{m}^3$. The technique allows to probe any transparent medium with a resonance structure and provides a robust diagnostic tool for atom-based quantum information protocols. As such, it is a viable technique for application to magnetometry, electrometry, and imaging of electromagnetic fields.