论文标题
在瓦斯堡空间中的几何稀疏编码
Geometric Sparse Coding in Wasserstein Space
论文作者
论文摘要
Wasserstein词典学习是一种无监督的方法,用于学习一系列概率分布的收集,这些分布产生了观察到的分布,例如Wasserstein Barycentric组合。 Wasserstein词典学习的现有方法优化了一个目标,该目标通过Barycentric插值寻求具有足够代表能力的字典以近似观察到的训练数据,但不会对与词典相关的系数施加其他结构特性。这导致词典密集地代表了观察到的数据,这使得对系数的解释具有挑战性,并且在下游任务中使用学习的系数时也可能导致经验性能差。相比之下,由欧几里得空间中稀疏的字典学习和动机,我们为Wasserstein空间提出了一个几何稀疏的常规化器,该空间仅使用附近的字典元素来促进数据点的表示。我们表明这种方法导致瓦斯施泰因空间中的稀疏表示,并解决了男性脑表示非唯一性的问题。此外,当生成数据作为固定分布的Wasserstein Barycenters时,此正常器促进了生成分布的恢复,而对于未进行无调的Wasserstein词典学习的情况不足。通过对合成和真实数据的实验,我们表明我们的几何正规化方法在Wasserstein空间中产生了更稀疏,更容易解释的词典,在下游应用中的性能更好。
Wasserstein dictionary learning is an unsupervised approach to learning a collection of probability distributions that generate observed distributions as Wasserstein barycentric combinations. Existing methods for Wasserstein dictionary learning optimize an objective that seeks a dictionary with sufficient representation capacity via barycentric interpolation to approximate the observed training data, but without imposing additional structural properties on the coefficients associated to the dictionary. This leads to dictionaries that densely represent the observed data, which makes interpretation of the coefficients challenging and may also lead to poor empirical performance when using the learned coefficients in downstream tasks. In contrast and motivated by sparse dictionary learning in Euclidean spaces, we propose a geometrically sparse regularizer for Wasserstein space that promotes representations of a data point using only nearby dictionary elements. We show this approach leads to sparse representations in Wasserstein space and addresses the problem of non-uniqueness of barycentric representation. Moreover, when data is generated as Wasserstein barycenters of fixed distributions, this regularizer facilitates the recovery of the generating distributions in cases that are ill-posed for unregularized Wasserstein dictionary learning. Through experimentation on synthetic and real data, we show that our geometrically regularized approach yields sparser and more interpretable dictionaries in Wasserstein space, which perform better in downstream applications.