论文标题

部分可观测时空混沌系统的无模型预测

Graphs with girth $2\ell+1$ and without longer odd holes that contain an odd $K_4$-subdivision

论文作者

Chen, Rong, Zhou, Yidong

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

We say that a graph $G$ has an {\em odd $K_4$-subdivision} if some subgraph of $G$ is isomorphic to a $K_4$-subdivision and whose faces are all odd holes of $G$. For a number $\ell\geq 2$, let $\mathcal{G}_{\ell}$ denote the family of graphs which have girth $2\ell+1$ and have no odd hole with length greater than $2\ell+1$. Wu, Xu and Xu conjectured that every graph in $\bigcup_{\ell\geq2}\mathcal{G}_{\ell}$ is 3-colorable. Recently, Chudnovsky et al. and Wu et al., respectively, proved that every graph in $\mathcal{G}_2$ and $\mathcal{G}_3$ is 3-colorable. In this paper, we prove that no $4$-vertex-critical graph in $\bigcup_{\ell\geq5}\mathcal{G}_{\ell}$ has an odd $K_4$-subdivision. Using this result, Chen proved that all graphs in $\bigcup_{\ell\geq5}\mathcal{G}_{\ell}$ are 3-colorable.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源