论文标题

部分可观测时空混沌系统的无模型预测

Divisibility on point counting over finite Witt rings

论文作者

Cao, Wei, Wan, Daqing

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

Let $\mathbb{F}_q$ denote the finite field of $q$ elements with characteristic $p$. Let $\mathbb{Z}_q$ denote the unramified extension of the $p$-adic integers $\mathbb{Z}_p$ with residue field $\mathbb{F}_q$. In this paper, we investigate the $q$-divisibility for the number of solutions of a polynomial system in $n$ variables over the finite Witt ring $\mathbb{Z}_q/p^m\mathbb{Z}_q$, where the $n$ variables of the polynomials are restricted to run through a combinatorial box lifting $\mathbb{F}_q^n$. The introduction of the combinatorial box makes the problem much more complicated. We prove a $q$-divisibility theorem for any box of low algebraic complexity, including the simplest Teichmüller box.This extends the classical Ax-Katz theorem over finite field $\mathbb{F}_q$ (the case $m=1$). Taking $q=p$ to be a prime, our result extends and improves a recent combinatorial theorem of Grynkiewicz. Our different approach is based on the addition operation of Witt vectors and is conceptually much more transparent.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源