论文标题

部分可观测时空混沌系统的无模型预测

Differential Operators, Gauges, and Mixed Hodge Modules

论文作者

Dodd, Christopher

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

The purpose of this paper is to develop a new theory of gauges in mixed characteristic. Namely, let $k$ be a perfect field of characteristic $p>0$ and $W(k)$ the $p$-typical Witt vectors. Making use of Berthelot's arithmetic differential operators, we define for a smooth formal scheme $\mathfrak{X}$ over $W(k)$, a new sheaf of algebras $\widehat{\mathcal{D}}_{\mathfrak{X}}^{(0,1)}$ which can be considered a higher dimensional analogue of the (commutative) Dieudonne ring. Modules over this sheaf of algebras can be considered the analogue (over $\mathfrak{X}$) of the gauges of Ekedahl and Fontain-Jannsen. We show that modules over $\widehat{\mathcal{D}}_{\mathfrak{X}}^{(0,1)}$ admit all of the usual $\mathcal{D}$-module operations, and we prove a robust generalization of Mazur's theorem in this context. Finally, we show that an integral form of a mixed Hodge module of geometric origin admits, after a suitable $p$-adic completion, the structure of a module over $\widehat{\mathcal{D}}_{\mathfrak{X}}^{(0,1)}$. This allows us to prove a version of Mazur's theorem for the intersection cohomology and the ordinary cohomology of an arbitrary quasiprojective variety defined over a number field.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源