论文标题

晶格等法和K3表面自动形态:塞勒姆度数20

Lattice isometries and K3 surface automorphisms: Salem numbers of degree 20

论文作者

Takada, Yuta

论文摘要

本文将Bayer-Fluckiger的定理扩展到偶数晶格上的异构体的特征多项式定理,以使异构体具有行为$ -1 $的情况。作为一个应用程序,我们表明,每个塞勒姆数量$ 20 $的对数被视为非注射K3表面的自动形态的拓扑熵。

This article extends Bayer-Fluckiger's theorem on characteristic polynomials of isometries on an even unimodular lattice to the case where the isometries have determinant $-1$. As an application, we show that the logarithm of every Salem number of degree $20$ is realized as the topological entropy of an automorphism of a nonprojective K3 surface.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源