论文标题
晶格等法和K3表面自动形态:塞勒姆度数20
Lattice isometries and K3 surface automorphisms: Salem numbers of degree 20
论文作者
论文摘要
本文将Bayer-Fluckiger的定理扩展到偶数晶格上的异构体的特征多项式定理,以使异构体具有行为$ -1 $的情况。作为一个应用程序,我们表明,每个塞勒姆数量$ 20 $的对数被视为非注射K3表面的自动形态的拓扑熵。
This article extends Bayer-Fluckiger's theorem on characteristic polynomials of isometries on an even unimodular lattice to the case where the isometries have determinant $-1$. As an application, we show that the logarithm of every Salem number of degree $20$ is realized as the topological entropy of an automorphism of a nonprojective K3 surface.