论文标题
theta功能和绝热曲率
Theta functions and adiabatic curvature on an Abelian variety
论文作者
论文摘要
对于Abelian品种$ M $上的充足的线条捆绑$ L $,我们研究与$ m $ the $ t \ in \ in \ in \ text {pic}^{0}(m)$的$ m $ in $ m $ in $ m $ in $ m $ in $ m $ on theta函数。结合适当的微分几何设置,这会导致对$ \ text {pic}^{0}(m)$上的直接图像捆绑$ e $的明确曲率计算,其光纤$ e_ {t} $是Theta对theta spann spann the theTa spann for theTa the theTa for the line bundle bundle bundle bundle $ l \ l \ ot $ ot $ $ $。 $ E $的一些代数几何特性也有所指出。
For an ample line bundle $L$ on an Abelian variety $M$, we study the theta functions associated with the family of line bundles $L\otimes T$ on $M$ indexed by $T\in \text{Pic}^{0}(M)$. Combined with an appropriate differential geometric setting, this leads to an explicit curvature computation of the direct image bundle $E$ on $\text{Pic}^{0}(M)$, whose fiber $E_{T}$ is the vector space spanned by the theta functions for the line bundle $L\otimes T$ on $M$. Some algebro-geometric properties of $E$ are also remarked.