论文标题

野外识别的面部软生物识别技术:最近的作品,注释和COTS评估

Facial Soft Biometrics for Recognition in the Wild: Recent Works, Annotation, and COTS Evaluation

论文作者

Gonzalez-Sosa, Ester, Fierrez, Julian, Vera-Rodriguez, Ruben, Alonso-Fernandez, Fernando

论文摘要

尚未对软生物识别技术在不受约束的情况下增强人识别系统的作用进行广泛研究。在这里,我们探讨了以下方式的实用性:性别,种族,年龄,眼镜,胡须和胡须。我们考虑两个假设:1)手动估算软生物识别技术,2)来自两个商业现成系统(COTS)的自动估计。使用野生(LFW)数据库中标记的面孔进行了所有实验。首先,我们研究了软生物识别技术独立的歧视能力。然后,实验将与基于深度学习的两个最先进的面部识别系统进行融合。我们观察到,在不受约束的情况下,软生物识别技术是对面部模态的有价值的补充,当使用手动/自动软性生物识别估计时,验证性能的相对改善高达40%/15%。结果是可以重现的,因为我们将LFW上软生物识别技术的手动注释和COTS输出以及面部识别评分。

The role of soft biometrics to enhance person recognition systems in unconstrained scenarios has not been extensively studied. Here, we explore the utility of the following modalities: gender, ethnicity, age, glasses, beard, and moustache. We consider two assumptions: 1) manual estimation of soft biometrics and 2) automatic estimation from two commercial off-the-shelf systems (COTS). All experiments are reported using the labeled faces in the wild (LFW) database. First, we study the discrimination capabilities of soft biometrics standalone. Then, experiments are carried out fusing soft biometrics with two state-of-the-art face recognition systems based on deep learning. We observe that soft biometrics is a valuable complement to the face modality in unconstrained scenarios, with relative improvements up to 40%/15% in the verification performance when using manual/automatic soft biometrics estimation. Results are reproducible as we make public our manual annotations and COTS outputs of soft biometrics over LFW, as well as the face recognition scores.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源