论文标题

与谎言群体的强大自我监督学习

Robust Self-Supervised Learning with Lie Groups

论文作者

Ibrahim, Mark, Bouchacourt, Diane, Morcos, Ari

论文摘要

深度学习导致了计算机视觉的显着进步。即便如此,当今天的最佳模型与培训期间看到的变化略有不同时,最佳模型也很脆弱。物体的姿势,颜色或照明的微小变化会导致灾难性的错误分类。最先进的模型努力了解一组变化如何影响不同的对象。我们提出了一个框架,用于灌输对象如何在更现实的设置中变化的概念。我们的方法应用了谎言群体的形式主义来捕获持续的转换,以改善模型对分配变化的鲁棒性。我们将我们的框架应用于最先进的自我监督学习(SSL)模型,发现以谎言组对转换进行了明确的建模转换,从而在现在以新的姿势出现的典型姿势以及在任何库物中的未知实例中都显示出MAE的大量绩效增长超过10%。我们还将方法应用于ImageNet,发现Lie Operator将绩效提高了几乎4%。这些结果证明了学习转变以提高模型鲁棒性的希望。

Deep learning has led to remarkable advances in computer vision. Even so, today's best models are brittle when presented with variations that differ even slightly from those seen during training. Minor shifts in the pose, color, or illumination of an object can lead to catastrophic misclassifications. State-of-the art models struggle to understand how a set of variations can affect different objects. We propose a framework for instilling a notion of how objects vary in more realistic settings. Our approach applies the formalism of Lie groups to capture continuous transformations to improve models' robustness to distributional shifts. We apply our framework on top of state-of-the-art self-supervised learning (SSL) models, finding that explicitly modeling transformations with Lie groups leads to substantial performance gains of greater than 10% for MAE on both known instances seen in typical poses now presented in new poses, and on unknown instances in any pose. We also apply our approach to ImageNet, finding that the Lie operator improves performance by almost 4%. These results demonstrate the promise of learning transformations to improve model robustness.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源