论文标题

通过多关系变压器与辅助项目关系进行顺序推荐

Sequential Recommendation with Auxiliary Item Relationships via Multi-Relational Transformer

论文作者

Fan, Ziwei, Liu, Zhiwei, Wang, Chen, Huang, Peijie, Peng, Hao, Yu, Philip S.

论文摘要

顺序推荐(SR)模型用户动力学并根据用户历史记录预测下一个优选项目。现有的SR方法模型模型“在序列中观察到的项目 - 项目过渡之前进行了交互”,可以将其视为项目关系。但是,在现实世界中,有多种辅助项目关系,例如来自类似品牌的项目,并且具有相似的内容。辅助项目关系描述了多种不同语义中的项目 - 项目亲和力,并减轻了建议中持久的冷启动问题。但是,建模SR中的辅助项目关系仍然是一个重大挑战。 为了同时建模序列和辅助项目关系的高阶项目 - 项目转换,我们提出了一种能够建模SR(MT4SR)辅助项目关系的多关系变压器。具体来说,我们提出了一个新颖的自我发项模块,该模块结合了任意项目关系和权重项目关系。其次,我们将序列内的项目关系与新的正则化模块进行规范化,以监督注意力计算。第三,对于序列项关系对,我们介绍了一个新颖的相关项目建模模块。最后,我们对四个基准数据集进行了实验,并证明了MT4SR对最先进方法的有效性以及对冷启动问题的改进。该代码可在https://github.com/zfan20/mt4sr上找到。

Sequential Recommendation (SR) models user dynamics and predicts the next preferred items based on the user history. Existing SR methods model the 'was interacted before' item-item transitions observed in sequences, which can be viewed as an item relationship. However, there are multiple auxiliary item relationships, e.g., items from similar brands and with similar contents in real-world scenarios. Auxiliary item relationships describe item-item affinities in multiple different semantics and alleviate the long-lasting cold start problem in the recommendation. However, it remains a significant challenge to model auxiliary item relationships in SR. To simultaneously model high-order item-item transitions in sequences and auxiliary item relationships, we propose a Multi-relational Transformer capable of modeling auxiliary item relationships for SR (MT4SR). Specifically, we propose a novel self-attention module, which incorporates arbitrary item relationships and weights item relationships accordingly. Second, we regularize intra-sequence item relationships with a novel regularization module to supervise attentions computations. Third, for inter-sequence item relationship pairs, we introduce a novel inter-sequence related items modeling module. Finally, we conduct experiments on four benchmark datasets and demonstrate the effectiveness of MT4SR over state-of-the-art methods and the improvements on the cold start problem. The code is available at https://github.com/zfan20/MT4SR.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源