论文标题

GUP可以作为ER = EPR猜想的模型吗?

Could GUP Act as a Model for the ER=EPR Conjecture?

论文作者

Ali, Ahmed Farag

论文摘要

爱因斯坦,波多尔斯基和罗森(EPR)通过思想实验提出,不确定性原则可能无法提供对现实的完整描述。我们建议线性普遍不确定性原理(GUP)可以通过证明在最小的可测量长度下消失的不确定性来解决EPR悖论。这可能会阐明量子力学的完整性,这使我们提出了线性GUP和Bekenstein Bound之间的等效性,该界限规定了完全描述物理系统至量子水平所需的最大信息量。通过解释氢的原子/核半径以及宇宙常数的值来验证这种当量。在最近发表的一项研究中,我们验证了爱因斯坦 - 罗森桥(ER)桥梁起源于最小长度或GUP。考虑到这些发现,我们建议线性GUP可以作为ER = EPR猜想的模型。

Einstein, Podolsky, and Rosen (EPR) proposed, via a thought experiment, that the uncertainty principle might not provide a complete description of reality. We propose that the linear generalized uncertainty principle (GUP) may resolve the EPR paradox by demonstrating vanishing uncertainty at the minimal measurable length. This may shed light on the completeness of quantum mechanics which leads us to propose an equivalency between the linear GUP and the Bekenstein bound, a bound that prescribes the maximum amount of information needed to completely describe a physical system up to quantum level. This equivalency is verified through explaining the Hydrogen's atom/nuclei radii as well as the value of the cosmological constant. In a recent published study, we verified that the Einstein-Rosen (ER) bridge originates from the minimal length or GUP. Considering these findings together, we propose that linear GUP could function as a model for the ER=EPR conjecture.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源