论文标题

IF衡量广义曲折图

IFS measures on generalized Bratteli diagrams

论文作者

Bezuglyi, Sergey, Jorgensen, Palle E. T.

论文摘要

本文的目的是对路径空间的一般分析 措施。我们的重点是一定的路径空间分析 在广义的野蛮图中。我们在对自相似度量的系统系统进行系统的研究(本文中使用``IFS措施'''一词)中使用了这一点。在特价中 案例,这种措施在迭代功能的研究中产生 系统(IFS)。在文献中,相似性可以由 例如,仿射图系统(Sierpinski)或共形系统 地图(朱莉娅)。我们学习新的半分支 功能系统与固定曲纹图有关。这 后者在我们的理解中起着重要的作用 关于分形的新形式的谐波分析。措施 在这里考虑的是在离散时间多级的类别中出现的 在级别之间指定相似性的动力系统。 这些结构是通过规定的系统精确的 进而定义自相似性的功能,即大尺度和小尺度的相似性。 对于路径空间系统,在我们的主要结果中,我们为存在这种普遍的IF措施提供了必要和充分的条件。对于相应的半分支功能系统,我们进一步确定了也是换档的度量。

The purpose of the paper is a general analysis of path space measures. Our focus is a certain path space analysis on generalized Bratteli diagrams. We use this in a systematic study of systems of self-similar measures (the term ``IFS measures'' is used in the paper) for both types of such diagrams, discrete and continuous. In special cases, such measures arise in the study of iterated function systems (IFS). In the literature, similarity may be defined by, e.g., systems of affine maps (Sierpinski), or systems of conformal maps (Julia). We study new classes of semi-branching function systems related to stationary Bratteli diagrams. The latter plays a big role in our understanding of new forms of harmonic analysis on fractals. The measures considered here arise in classes of discrete-time, multi-level dynamical systems where similarity is specified between levels. These structures are made precise by prescribed systems of functions which in turn serve to define self-similarity, i.e., the similarity of large scales, and small scales. For path space systems, in our main result, we give a necessary and sufficient condition for the existence of such generalized IFS measures. For the corresponding semi-branching function systems, we further identify the measures which are also shift-invariant.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源