论文标题

通过利用玻色孔多型腔Q来制定同步的动态结构

Crafting the dynamical structure of synchronization by harnessing bosonic multilevel cavity QED

论文作者

Valencia-Tortora, Riccardo J., Kelly, Shane P., Donner, Tobias, Morigi, Giovanna, Fazio, Rosario, Marino, Jamir

论文摘要

多体腔QED实验是建立的平台,以量身定制和控制原子集合的集体响应,并通过一种或多种常见的光子模式相互作用。他们可以托管的动态阶段的丰富多样性,需要一个统一的框架。在这里,我们通过表明从$ n $ levels bosonic原子组装的腔QED模拟器开始开始该程序,可以重现并扩展淬灭后发生的集体观测值的可能动态响应。具体而言,通过在经典或量子状态中初始化原子,或利用量子量子相关性,我们按需制作整个同步/desyngernization the Exchange模型的$ su(n)$ spins spins的交换模型。我们通过将liouville-arnold定理与经典集成性和ANSATZ相结合,以将集体进化减少到有效的几种体型动力学,从而定量预测不同的动态响应的开始。其中,我们发现了由量子相关性引起的同步混沌相,并与集体原子动力学的Lyapunov指数中的一阶非平衡过渡相关。我们的外展包括对其他自旋交换量子模拟器的扩展,以及一个通用的猜想,用于动态降低不可融合的全部交互系统。

Many-body cavity QED experiments are established platforms to tailor and control the collective responses of ensembles of atoms, interacting through one or more common photonic modes. The rich diversity of dynamical phases they can host, calls for a unified framework. Here we commence this program by showing that a cavity QED simulator assembled from $N$-levels bosonic atoms, can reproduce and extend the possible dynamical responses of collective observables occurring after a quench. Specifically, by initializing the atoms in classical or quantum states, or by leveraging intra-levels quantum correlations, we craft on demand the entire synchronization/desynchronization dynamical crossover of an exchange model for $SU(N)$ spins. We quantitatively predict the onset of different dynamical responses by combining the Liouville-Arnold theorem on classical integrability with an ansatz for reducing the collective evolution to an effective few-body dynamics. Among them, we discover a synchronized chaotic phase induced by quantum correlations and associated to a first order non-equilibrium transition in the Lyapunov exponent of collective atomic dynamics. Our outreach includes extensions to other spin-exchange quantum simulators and a universal conjecture for the dynamical reduction of non-integrable all-to-all interacting systems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源