论文标题
一氧化硫发射在HD 100546 Protoplanetary磁盘中追踪嵌入式行星
Sulphur monoxide emission tracing an embedded planet in the HD 100546 protoplanetary disk
论文作者
论文摘要
分子线观测是恒星,磁盘和行星形成的不同进化阶段的物理和化学条件的强大示踪剂。使用Atacama大毫米阵列(ALMA)的高角度分辨率和前所未有的灵敏度,现在有一个驱动器来检测原动性磁盘中的小规模气体结构,这可以直接归因于形成行星。我们报告了附近的星球托动磁盘在Herbig Star HD 100546周围的高角度分辨率ALMA带7的观测值。 HD 100546磁盘发射的SO发射主要来自大约内的气体。 20 Au mm粉尘腔,并显示出明显的方位角亮度不对称为2倍。此外,当将这些新循环7数据与同一SO的循环0数据进行比较时,我们看到了线轮廓形状的显着差异。我们讨论可能导致这种不对称性和时间变化的不同物理/化学机制,包括磁盘风,磁盘翘曲以及由(形成)行星触发的冲击。我们建议,由于存在巨型行星,因此在腔体中增强了SO。如此不对称补充了通过CO RO振动发射追踪的巨型行星HD 100546 c周围热的材料的证据。这项工作为进一步的观察和建模努力奠定了基础,以检测和理解其父盘上形成行星的化学烙印。
Molecular line observations are powerful tracers of the physical and chemical conditions across the different evolutionary stages of star, disk and planet formation. Using the high angular resolution and unprecedented sensitivity of the Atacama Large Millimeter Array (ALMA) there is now a drive to detect small-scale gas structures in protoplanetary disks that can be attributed directly to forming planets. We report high angular resolution ALMA Band 7 observations of sulphur monoxide (SO) in the nearby planet-hosting disk around Herbig star HD 100546. SO is rarely detected in evolved protoplanetary disks but in other environments, it is most often utilised as a tracer of shocks. The SO emission from the HD 100546 disk is primarily originating from gas within the approx. 20 au mm-dust cavity and shows a clear azimuthal brightness asymmetry of a factor of 2. In addition, we see a significant difference in the line profile shape when comparing these new Cycle 7 data to Cycle 0 data of the same SO transitions. We discuss the different physical/chemical mechanisms that could be responsible for this asymmetry and time variability including disk winds, disk warps, and a shock triggered by a (forming) planet. We propose that the SO is enhanced in the cavity due to the presence of a giant planet. The SO asymmetry complements evidence for hot circumplanetary material around the giant planet HD 100546 c traced via CO ro-vibrational emission. This work sets the stage for further observational and modelling efforts to detect and understand the chemical imprint of a forming planet on its parent disk.