论文标题
部分可观测时空混沌系统的无模型预测
Topologically protected boundary discrete time crystal for a solvable model
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
Floquet time crystal, which breaks discrete time-translation symmetry, is an intriguing phenomenon in non-equilibrium systems. It is crucial to understand the rigidity and robustness of discrete time crystal (DTC) phases in a many-body system, and finding a precisely solvable model can pave a way for understanding of the DTC phase. Here, we propose and study a solvable spin chain model by mapping it to a Floquet superconductor through the Jordan-Wigner transformation. The phase diagrams of Floquet topological systems are characterized by topological invariants and tell the existence of anomalous edge states. The sub-harmonic oscillation, which is the typical signal of the DTC, can be generated from such edge states and protected by topology. We also examine the robustness of the DTC by adding symmetry-preserving and symmetry-breaking perturbations. Our results on topologically protected DTC can provide a deep understanding of the DTC when generalized to other interacting or dissipative systems.