论文标题
部分可观测时空混沌系统的无模型预测
On polyhomogeneous symbols and the Heisenberg pseudodifferential calculus
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
Polyhomogeneous symbols, defined by Kohn-Nirenberg and Hörmander in the 60's, play a central role in the symbolic calculus of most pseudodifferential calculi. We prove a simple characterisation of polyhomogeneous functions which avoids the use of asymptotic expansions. Specifically, if $U$ is open subset of $\mathbb{R}^d$, then a polyhomogeneous symbol on $U \times \mathbb{R}^d$ is precisely the restriction to $t=1$ of a function on $U \times \mathbb{R}^{d+1}$ which is homogeneous for the dilations of $\mathbb{R}^{d+1}$ modulo Schwartz class functions. This result holds for arbitrary graded dilations on the vector space $\mathbb{R}^d$. As an application, using the generalisation of A.~Connes' tangent groupoid for a filtered manifold, we show that the Heisenberg calculus of Beals and Greiner on a contact manifold or a codimension 1 foliation coincides with the groupoid calculus of Van Erp and the second author.