论文标题

在抽象Wiener空间中的sobolev空间的表征

Characterizations of Sobolev spaces on sublevel sets in abstract Wiener spaces

论文作者

Addona, Davide, Menegatti, Giorgio, Miranda Jr, Michele

论文摘要

在本文中,我们考虑了一个抽象的Wiener空间$(x,γ,h)$和一个开放子集$ o \ subseteq x $,它满足合适的假设。对于(1,+\ infty)$中的每一个$ p \,我们定义sobolev space $ w_ {0}^{1,p}(o,γ)$作为Lipschitz的封闭函数的关闭,这些功能以$ \ fartial o $ $ $ $ $ $ o $ o $ o o $ o o o o o o o o o o o o o o o o $ o o o $ o o $ o $W_{0}^{1,p}(O,γ)$ can be characterized as the space of functions in $W^{1,p}(O,γ)$ which have null tr​​ace at the boundary $\partial O$, or, equivalently, as the space of functions defined on $O$ whose trivial extension belongs to $W^{1,p}(X,γ)$.

In this paper we consider an abstract Wiener space $(X,γ,H)$ and an open subset $O\subseteq X$ which satisfies suitable assumptions. For every $p\in(1,+\infty)$ we define the Sobolev space $W_{0}^{1,p}(O,γ)$ as the closure of Lipschitz continuous functions which support with positive distance from $\partial O$ with respect to the natural Sobolev norm, and we show that under the assumptions on $O$ the space $W_{0}^{1,p}(O,γ)$ can be characterized as the space of functions in $W^{1,p}(O,γ)$ which have null trace at the boundary $\partial O$, or, equivalently, as the space of functions defined on $O$ whose trivial extension belongs to $W^{1,p}(X,γ)$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源