论文标题

使用光谱相互作用和SVM分类器的高光谱图像分类和降低尺寸降低

Hyperspectral Images Classification and Dimensionality Reduction using spectral interaction and SVM classifier

论文作者

Elmaizi, Asma, Sarhrouni, Elkebir, Hammouch, Ahmed, Chafik, Nacir

论文摘要

在过去的几十年中,高光谱的遥感技术开发吸引了各个领域的科学家的兴趣。高光谱传感器提供的丰富而详细的光谱信息提高了地面物质的监测和检测能力。但是,高光谱图像(HSI)的高维度是分析收集数据的主要挑战之一。嘈杂,冗余和无关的带的存在增加了计算复杂性,诱导休斯现象并降低了目标的分类精度。因此,降低维度是面对维度挑战的重要步骤。在本文中,我们提出了一种基于光谱相互作用度量的最大化和支持矢量机器的新型滤波器方法,以降低HSI的尺寸性和分类。拟议的最大相关性最大协同作用(MRMS)算法通过光谱协同,冗余性和相关性度量的结合来评估每个频段的相关性。我们的目标是选择协同频段的最佳子集,从而提供对监督场景材料的准确分类。实验结果已经使用三个不同的高光谱数据集进行了:“印第安纳松树”,“帕维亚大学”和“ NASA-AVIRIS”和“ ROSIS”光谱仪提供的“帕维亚大学”和“ Salinas”。此外,为了证明所提出的方法的鲁棒性和效率,已经进行了与艺术带选择方法的比较。 关键字:高光谱图像,遥感,降低尺寸降低,分类,协同,相关,光谱互动信息,相互信息

Over the past decades, the hyperspectral remote sensing technology development has attracted growing interest among scientists in various domains. The rich and detailed spectral information provided by the hyperspectral sensors has improved the monitoring and detection capabilities of the earth surface substances. However, the high dimensionality of the hyperspectral images (HSI) is one of the main challenges for the analysis of the collected data. The existence of noisy, redundant and irrelevant bands increases the computational complexity, induce the Hughes phenomenon and decrease the target's classification accuracy. Hence, the dimensionality reduction is an essential step to face the dimensionality challenges. In this paper, we propose a novel filter approach based on the maximization of the spectral interaction measure and the support vector machines for dimensionality reduction and classification of the HSI. The proposed Max Relevance Max Synergy (MRMS) algorithm evaluates the relevance of every band through the combination of spectral synergy, redundancy and relevance measures. Our objective is to select the optimal subset of synergistic bands providing accurate classification of the supervised scene materials. Experimental results have been performed using three different hyperspectral datasets: "Indiana Pine", "Pavia University" and "Salinas" provided by the "NASA-AVIRIS" and the "ROSIS" spectrometers. Furthermore, a comparison with the state of the art band selection methods has been carried out in order to demonstrate the robustness and efficiency of the proposed approach. Keywords: Hyperspectral images, remote sensing, dimensionality reduction, classification, synergic, correlation, spectral interaction information, mutual inform

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源