论文标题

使用知识图了解不良生物学效应预测

Understanding Adverse Biological Effect Predictions Using Knowledge Graphs

论文作者

Myklebust, Erik Bryhn, Jimenez-Ruiz, Ernesto, Chen, Jiaoyan, Wolf, Raoul, Tollefsen, Knut Erik

论文摘要

化学物质不良生物(毒性)的推断是扩大(ECO)毒理学中可用危害数据的重要贡献,而无需在实验室实验中使用动物。在这项工作中,我们根据知识图(kg)推断效果,该效果由最相关的效果数据作为特定于领域的背景知识。具有和没有背景知识的效应预测模型被用来预测化学物质的平均不良生物学效应浓度作为典型的应激源。背景知识以$ r^2 $(\ ie的确定系数)将模型预测性能提高了40 \%。我们使用kg和kg嵌入来提供对预测的定量和定性见解。这些见解有望提高对预测的自信心。通过简化和减少测试需求,应期望这种外推模型的更大规模实施能够支持危害和风险评估。

Extrapolation of adverse biological (toxic) effects of chemicals is an important contribution to expand available hazard data in (eco)toxicology without the use of animals in laboratory experiments. In this work, we extrapolate effects based on a knowledge graph (KG) consisting of the most relevant effect data as domain-specific background knowledge. An effect prediction model, with and without background knowledge, was used to predict mean adverse biological effect concentration of chemicals as a prototypical type of stressors. The background knowledge improves the model prediction performance by up to 40\% in terms of $R^2$ (\ie coefficient of determination). We use the KG and KG embeddings to provide quantitative and qualitative insights into the predictions. These insights are expected to improve the confidence in effect prediction. Larger scale implementation of such extrapolation models should be expected to support hazard and risk assessment, by simplifying and reducing testing needs.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源