论文标题

在合成孔径雷达成像中基于深度学习的异常检测

Deep Learning-Based Anomaly Detection in Synthetic Aperture Radar Imaging

论文作者

Muzeau, Max, Ren, Chengfang, Angelliaume, Sébastien, Datcu, Mihai, Ovarlez, Jean-Philippe

论文摘要

在本文中,我们提议研究合成孔径雷达(SAR)图像中无监督的异常检测。我们的方法将异常视为异常模式,偏离周围的环境,但没有任何先验知识。在文献中,大多数基于模型的算法面临三个主要问题。首先,斑点噪声会破坏图像,并可能导致许多错误的检测。其次,统计方法可能在SAR图像中的空间相关性建模时表现出缺陷。最后,由于缺乏带注释的SAR数据,特别是对于异常模式类别,因此不建议使用基于监督学习方法的神经网络。我们提出的方法旨在通过自我监督的算法解决这些问题。首先通过深度学习SAR2SAR算法去除斑点。然后,对对抗性自动编码器进行了训练,可以重建无异常的SAR图像。最后,在输入和输出之间应用了更改检测处理步骤以检测异常。与常规的Reed-Xiaoli算法相比,进行了实验以显示我们方法的优势,从而强调了有效的伪装预处理步骤的重要性。

In this paper, we proposed to investigate unsupervised anomaly detection in Synthetic Aperture Radar (SAR) images. Our approach considers anomalies as abnormal patterns that deviate from their surroundings but without any prior knowledge of their characteristics. In the literature, most model-based algorithms face three main issues. First, the speckle noise corrupts the image and potentially leads to numerous false detections. Second, statistical approaches may exhibit deficiencies in modeling spatial correlation in SAR images. Finally, neural networks based on supervised learning approaches are not recommended due to the lack of annotated SAR data, notably for the class of abnormal patterns. Our proposed method aims to address these issues through a self-supervised algorithm. The speckle is first removed through the deep learning SAR2SAR algorithm. Then, an adversarial autoencoder is trained to reconstruct an anomaly-free SAR image. Finally, a change detection processing step is applied between the input and the output to detect anomalies. Experiments are performed to show the advantages of our method compared to the conventional Reed-Xiaoli algorithm, highlighting the importance of an efficient despeckling pre-processing step.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源