论文标题
LEAVITT路径代数的模块通过扩展代数分支系统
Modules for Leavitt path algebras via extended algebraic branching systems
论文作者
论文摘要
对于图$ e $,我们介绍了扩展的$ e $ - 代数分支系统的概念,从而概括了Gonçalves和Royer引入的$ e $ e $ - 代数分支系统的概念。我们对扩展的$ e $ - 代数分支系统进行了分类,并表明它们为相应的Leavitt Path代数$ L(E)$诱导模块。在这些模块中,我们发现了一类非简单模块,其内态环是字段。
For a graph $E$, we introduce the notion of an extended $E$-algebraic branching system, generalising the notion of an $E$-algebraic branching system introduced by Gonçalves and Royer. We classify the extended $E$-algebraic branching systems and show that they induce modules for the corresponding Leavitt path algebra $L(E)$. Among these modules we find a class of nonsimple modules whose endomorphism rings are fields.