论文标题

使用线性随机预测模型对非线性拉格朗日数据同化的不确定性定量

Uncertainty Quantification of Nonlinear Lagrangian Data Assimilation Using Linear Stochastic Forecast Models

论文作者

Chen, Nan, Fu, Shubin

论文摘要

拉格朗日数据同化利用移动示踪剂的轨迹作为恢复基础流场的观察。拉格朗日数据同化的一个主要挑战是固有的非线性,这种非线性阻碍了使用精确的贝叶斯公式进行高维系统的状态估计。在本文中,开发了一个可分析的可用于连续时间拉格朗日数据同化的数学框架。它在观察过程中保留了非线性,同时使用线性随机模型(LSMS)近似基础流场的预测模型。该框架的一个关键特征是可以解决封闭的分析公式用于解决后验分布,从而有助于数学分析和数值模拟。首先,鉴于可分析典型的统计数据,开发了有效的迭代算法。它仅使用少量观察到的示踪剂轨迹来准确地估算LSMS中的参数。接下来,该框架有助于开发几种计算有效的近似过滤器和相关不确定性的量化。廉价的近似滤波器具有从后估计的渐近分析得出的对角线后协方差,被证明在恢复不可压缩的流动方面熟练。还证明,在每个时间步骤中随机选择少量的示踪剂,因为观察可以降低计算成本,同时保持数据同化精度。最后,基于地球物理学的原型模型,具有LSMS的框架被证明在过滤具有强大非高斯特征的非线性湍流场方面具有熟练的作用。

Lagrangian data assimilation exploits the trajectories of moving tracers as observations to recover the underlying flow field. One major challenge in Lagrangian data assimilation is the intrinsic nonlinearity that impedes using exact Bayesian formulae for the state estimation of high-dimensional systems. In this paper, an analytically tractable mathematical framework for continuous-in-time Lagrangian data assimilation is developed. It preserves the nonlinearity in the observational processes while approximating the forecast model of the underlying flow field using linear stochastic models (LSMs). A critical feature of the framework is that closed analytic formulae are available for solving the posterior distribution, which facilitates mathematical analysis and numerical simulations. First, an efficient iterative algorithm is developed in light of the analytically tractable statistics. It accurately estimates the parameters in the LSMs using only a small number of the observed tracer trajectories. Next, the framework facilitates the development of several computationally efficient approximate filters and the quantification of the associated uncertainties. A cheap approximate filter with a diagonal posterior covariance derived from the asymptotic analysis of the posterior estimate is shown to be skillful in recovering incompressible flows. It is also demonstrated that randomly selecting a small number of tracers at each time step as observations can reduce the computational cost while retaining the data assimilation accuracy. Finally, based on a prototype model in geophysics, the framework with LSMs is shown to be skillful in filtering nonlinear turbulent flow fields with strong non-Gaussian features.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源