论文标题
黑素细胞皮肤肿瘤全幻灯片图像中的感兴趣区域检测区域
Region of Interest Detection in Melanocytic Skin Tumor Whole Slide Images
论文作者
论文摘要
在组织病理学图像分析中,自动化区域检测是一个具有挑战性且重要的主题,对临床实践有巨大的潜在影响。计算病理学中使用的深度学习方法有助于我们降低成本,并提高感兴趣区域检测和癌症诊断区域的速度和准确性。在这项工作中,我们提出了一种基于斑块的感兴趣区域检测方法,用于黑素细胞肿瘤全裂片图像。我们与一个包含165个原发性黑色素瘤和Nevi苏木精和曙红全扫描图像的数据集一起工作,并构建一种深度学习方法。所提出的方法在保留测试数据集中表现良好,包括五台TCGA-SKCM载玻片(在幻灯片分类任务中的准确性为93.94%,而相交的相交比联合率的41.27 \%在感兴趣的检测任务中为41.27 \%),显示了我们模型在梅兰西细胞皮肤肿瘤上的出色性能。即使我们测试了皮肤肿瘤数据集上的实验,我们的工作也可以扩展到其他医疗图像检测问题,例如各种肿瘤的分类和预测,以帮助和受益于不同肿瘤的临床评估和诊断。
Automated region of interest detection in histopathological image analysis is a challenging and important topic with tremendous potential impact on clinical practice. The deep-learning methods used in computational pathology help us to reduce costs and increase the speed and accuracy of regions of interest detection and cancer diagnosis. In this work, we propose a patch-based region of interest detection method for melanocytic skin tumor whole-slide images. We work with a dataset that contains 165 primary melanomas and nevi Hematoxylin and Eosin whole-slide images and build a deep-learning method. The proposed method performs well on a hold-out test data set including five TCGA-SKCM slides (accuracy of 93.94\% in slide classification task and intersection over union rate of 41.27\% in the region of interest detection task), showing the outstanding performance of our model on melanocytic skin tumor. Even though we test the experiments on the skin tumor dataset, our work could also be extended to other medical image detection problems, such as various tumors' classification and prediction, to help and benefit the clinical evaluation and diagnosis of different tumors.