论文标题

$a_α$频谱半径为$ k $连接的图形,给定直径

The $A_α$ spectral radius of $k$-connected graphs with given diameter

论文作者

Liu, Xichan, Wang, Ligong

论文摘要

令$ g $为具有邻接矩阵$ a(g)$和学位对角线矩阵$ d(g)$的图表。 2017年,Nikiforov定义了[0,1] $中任何实际$α\的矩阵$a_α(g)=αd(g) +(1-α)a(g)$。 $a_α(g)$的最大特征值称为$a_α$频谱半径或$ g $的$a_α$索引。 令$ \ Mathcal {g} _ {n,k}^d $是$ k $连接的订单$ n $的图形,带直径$ d $。在本文中,我们确定了$ \ MATHCAL {G} _ {n,k}^d $的所有图中的最大$a_α$光谱半径的图形,其中任何$α\ in [0,1)$中的任何$α\,其中$ k \ geq2 $和$ d \ d \ geq2 $。我们概括了[P.中定理3.6的邻接矩阵的结果华盛顿州黄Shiu,P.K。太阳,线性代数应用,488(2016)350--362],以及关于无迹象的laplacian矩阵的结果。 Huang,J.X。Li,W.C。 Shiu,线性代数应用,617(2021)78-99]。此外,我们还以$ \ Mathcal {g} _ {n,k}^d $获得了极值图的上限和下限。

Let $G$ be a graph with adjacency matrix $A(G)$ and degree diagonal matrix $D (G)$. In 2017, Nikiforov defined the matrix $A_α(G) = αD(G) + (1-α)A(G)$ for any real $α\in[0,1]$. The largest eigenvalue of $A_α(G)$ is called the $A_α$ spectral radius or the $A_α$-index of $G$. Let $\mathcal{G}_{n,k}^d$ be the set of $k$-connected graphs of order $n$ with diameter $d$. In this paper, we determine the graphs with maximum $A_α$ spectral radius among all graphs in $\mathcal{G}_{n,k}^d$ for any $α\in[0,1)$, where $k\geq2$ and $d\geq2$. We generalizes the results about adjacency matrix of Theorem 3.6 in [P. Huang, W.C. Shiu, P.K. Sun, Linear Algebra Appl., 488 (2016) 350--362] and the results about signless Laplacian matrix of Theorem 3.4 in [P. Huang, J.X. Li, W.C. Shiu, Linear Algebra Appl., 617 (2021) 78--99]. Furthermore, we also obtain the upper and lower bounds of the extremal graph in $\mathcal{G}_{n,k}^d$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源