论文标题

Track2Vec:公平音乐推荐,并提供无GPU的可自定义驱动框架

Track2Vec: fairness music recommendation with a GPU-free customizable-driven framework

论文作者

Du, Wei-Wei, Wang, Wei-Yao, Peng, Wen-Chih

论文摘要

建议系统说明了根据用户过去的行为来表征用户偏好的重大进展。尽管有效地推荐了有效性,但仍有几个因素是必不可少的,但尚未探索用于评估推荐系统的各个方面,例如公平,多样性和有限的资源。为了解决这些问题,我们提出了Track2Vec,这是公平音乐推荐的无GPU可自定义驱动的框架。为了同时考虑准确性和公平性,我们的解决方案包括三个模块,一个基于可配置设置的自定义公平感知的组,用于建模不同的功能,一种用于学习更好的用户嵌入的轨道表示模块以及用于从不同轨道表示模块中排名推荐结果的集合模块。此外,受到TF-IDF的启发,它已被广泛用于自然语言处理,我们引入了一个称为MISS率的度量标准 - 逆地面真相频率(MR-ITF)来衡量公平性。广泛的实验表明,我们的模型在Evalrs @ cikm 2022 Challenge中的排行榜上获得了第四个价格排名,就官方分数而言,该挑战率高于官方基线约200%。此外,消融研究说明了将每个小组同于准确和公平建议的必要性。

Recommendation systems have illustrated the significant progress made in characterizing users' preferences based on their past behaviors. Despite the effectiveness of recommending accurately, there exist several factors that are essential but unexplored for evaluating various facets of recommendation systems, e.g., fairness, diversity, and limited resources. To address these issues, we propose Track2Vec, a GPU-free customizable-driven framework for fairness music recommendation. In order to take both accuracy and fairness into account, our solution consists of three modules, a customized fairness-aware groups for modeling different features based on configurable settings, a track representation learning module for learning better user embedding, and an ensemble module for ranking the recommendation results from different track representation learning modules. Moreover, inspired by TF-IDF which has been widely used in natural language processing, we introduce a metric called Miss Rate - Inverse Ground Truth Frequency (MR-ITF) to measure the fairness. Extensive experiments demonstrate that our model achieves a 4th price ranking in a GPU-free environment on the leaderboard in the EvalRS @ CIKM 2022 challenge, which is superior to the official baseline by about 200% in terms of the official scores. In addition, the ablation study illustrates the necessity of ensembling each group to acquire both accurate and fair recommendations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源