论文标题

Banach代数及其第二个二元组的同源和同源特性

Homological and cohomological properties of Banach algebras and their second duals

论文作者

Mehdipour, M. J., Rejali, A.

论文摘要

在本文中,我们研究了Banach代数的同源特性。我们表明,缩回Banach代数可保留双向物t,订约性和双足。我们还证明,BANACH代数的第二双二双的合同意味着Banach代数的签约性。对于带有$δ(a)\ neq \ emptySet $的Banach代数$ a $,令$ \ frak {f}(x,x,a)为Banach代数$ c_b(x,a)$,$ c_0(x,x,a)$,a)$,$ \ hbox {lip} lip {lip {lip}_α(lip) a)$。在下文中,我们研究Banach代数$ \ frak {f}(x,a)$的同源性能,尤其是其合同。我们证明,$ \ frak {f}(x,a)$的合同等同于$ x $的有限和$ a $的合同。如果$ a $是可交换的,则我们表明$ \ frak {f}(x,a)$在且仅当$ a $ as a $ as a $ c^* - $代数以及$ x $和$ x $和$δ(a)$都是有限的时。特别是,$ \ hbox {lip}_α^0(x,a)$在且仅当$ x $是有限时才可以签约。我们还调查$ l^1(g,a)$的合同性,并在$ g $有限的情况下,$ l^1(g,a)$是合同的,并且$ a $是合同的。最后,我们表明,beurling代数$ l^1(g,ω)$的双向物质相当于$ g $的紧凑性,但是,Banach代数$ l^1(g,ω)^{**} $的双原位性相当于$ g $。此结果适用于Banach代数$ M(g,ω)^{**} $,而不是$ l^1(g,ω)^{**} $。

In this paper, we investigate homological properties of Banach algebras. We show that retractions Banach algebras preserve biprojectivity, contractibility and biflatness. We also prove that contractibility of second dual of a Banach algebra implies contractibility of the Banach algebra. For a Banach algebra $A$ with $Δ(A)\neq\emptyset$, let $\frak{F}(X, A)$ be one of the Banach algebras $C_b(X, A)$, $C_0(X, A)$, $\hbox{Lip}_α(X, A)$ or $\hbox{lip}_α(X, A)$. In the following, we study homological properties of Banach algebra $\frak{F}(X, A)$, especially contractibility of it. We prove that contractibility of $\frak{F}(X, A)$ is equivalent to finiteness of $X$ and contractibility of $A$. In the case where, $A$ is commutative, we show that $\frak{F}(X, A)$ is contractible if and only if $A$ is a $C^*-$algebra and both $X$ and $Δ(A)$ are finite. In particular, $\hbox{lip}_α^0(X, A)$ is contractible if and only if $X$ is finite. We also investigate contractibility of $L^1(G, A)$ and establish $L^1(G, A)$ is contractible if and only if $G$ finite and $A$ is contractible. Finally, we show that biprojectivity of the Beurling algebra $L^1(G, ω)$ is equivalent to compactness of $G$, however, biprojectivity of the Banach algebras $L^1(G, ω)^{**}$ is equivalent to finiteness of $G$. This result holds for the Banach algebra $M(G, ω)^{**}$ instead of $L^1(G, ω)^{**}$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源