论文标题
Auxo:通过可伸缩客户群的有效的联合学习
Auxo: Efficient Federated Learning via Scalable Client Clustering
论文作者
论文摘要
联合学习(FL)是一种新兴的机器学习(ML)范式,它使异质边缘设备能够协作训练ML模型,而无需向逻辑集中的服务器揭示其原始数据。但是,除了异质设备容量之外,FL参与者通常在其数据分布中表现出差异,这些分布并非独立且分布相同(非IID)。许多现有的作品提出了点解决方案,以解决诸如趋势趋势,最终准确性较低和FL的偏见等问题,所有这些都源于客户异质性。在本文中,我们探索了一层复杂性,以通过将客户分组为统计上相似的数据分布(同类)来减轻这种异质性。我们建议Auxo在大规模,低可用性和资源约束的FL人群中逐渐识别此类队列。然后,Auxo自适应地确定了如何训练队列特定模型,以实现更好的模型性能并确保资源效率。我们的广泛评估表明,通过鉴定具有较小异质性的队列并进行有效的队列训练,Auxo就最终准确性(2.1%-8.2%),收敛时间(最高2.2x)和模型偏差(4.8%-53.8%)来增强现有的FL解决方案。
Federated learning (FL) is an emerging machine learning (ML) paradigm that enables heterogeneous edge devices to collaboratively train ML models without revealing their raw data to a logically centralized server. However, beyond the heterogeneous device capacity, FL participants often exhibit differences in their data distributions, which are not independent and identically distributed (Non-IID). Many existing works present point solutions to address issues like slow convergence, low final accuracy, and bias in FL, all stemming from client heterogeneity. In this paper, we explore an additional layer of complexity to mitigate such heterogeneity by grouping clients with statistically similar data distributions (cohorts). We propose Auxo to gradually identify such cohorts in large-scale, low-availability, and resource-constrained FL populations. Auxo then adaptively determines how to train cohort-specific models in order to achieve better model performance and ensure resource efficiency. Our extensive evaluations show that, by identifying cohorts with smaller heterogeneity and performing efficient cohort-based training, Auxo boosts various existing FL solutions in terms of final accuracy (2.1% - 8.2%), convergence time (up to 2.2x), and model bias (4.8% - 53.8%).