论文标题
$ p $ harmonic $ 1 $表格消失的定理和有限定理
Vanishing theorem and finiteness theorem for $p$-harmonic $1$ form
论文作者
论文摘要
在本文中,我们将在Submanifold $ m $ in $ \ bar {m} $上显示$ p $谐波$ 1 $形式的消失定理。作为推论,我们可以获得$ p $谐波功能的相应定理和$ p $谐波地图。我们还研究了$ p $谐波$ 1 $ 1 $形式的$ \ in $ \ bar {m} $的有限问题。
In this paper, we will show vanishing theorem of $p$ harmonic $1$ form on submanifold $M$ in $ \bar{M} $ whose BiRic curvature satisfying $ \overline{\mathrm{BiRic}}^a \geq Φ_a(H,S) $. As an corollary, we can get the corresponding theorem for $ p $ harmonic function and $ p $ harmonic map. We also investigate the finiteness problem of $p$ harmonic $1$ form on submanifold $M$ in $ \bar{M} $ whose BiRic curvature satisfying $ \overline{\mathrm{BiRic}}^a \geq -k^2 $.