论文标题

椭圆曲线的扭转群的生长在数字场上变化后的基础变化

Growth of torsion groups of elliptic curves upon base change from number fields

论文作者

Genao, Tyler

论文摘要

给定一个数字字段$ f_0 $,其中不包含任何假想二次二次字段的希尔伯特课程,我们表明存在一个有效的可计算常数$ b:= b(f_0)\ in \ mathbb {z}^+$,以下是任何有限的$ l/f_0 $ copri $ [l: $ e _ {/f_0} $,$ l $ - 合理扭转子组$ e(l)[\ textrm {tors}] = e(f_0)[\ textrm {tors}] $。这概括了González-Jiménez和Najman的先前结果,超过$ F_0 = \ Mathbb {q} $。 为了展示这一点,我们还证明了mod-$ \ ell $ galois代表椭圆曲线的相对统一分裂性的结果。此外,我们表明,当我们允许$ f_0 $具有合理定义的CM时,主要结果的结论失败了,这是因为存在$ f_0 $ - 理性的质量基因,这些$ f_0 $ - 理性的同基因是任意较大的高级学位,满足某些一致性条件。

Given a number field $F_0$ that contains no Hilbert class field of any imaginary quadratic field, we show that under GRH there exists an effectively computable constant $B:=B(F_0)\in\mathbb{Z}^+$ for which the following holds: for any finite extension $L/F_0$ whose degree $[L:F_0]$ is coprime to $B$, one has for all elliptic curves $E_{/F_0}$ that the $L$-rational torsion subgroup $E(L)[\textrm{tors}]=E(F_0)[\textrm{tors}]$. This generalizes a previous result of González-Jiménez and Najman over $F_0=\mathbb{Q}$. Towards showing this, we also prove a result on relative uniform divisibility of the index of a mod-$\ell$ Galois representation of an elliptic curve over $F_0$. Additionally, we show that the main result's conclusion fails when we allow $F_0$ to have rationally defined CM, due to the existence of $F_0$-rational isogenies of arbitrarily large prime degrees satisfying certain congruency conditions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源