论文标题
全态浮子理论和唐纳森 - 托马斯不变
Holomorphic Floer theory and Donaldson-Thomas invariants
论文作者
论文摘要
我们介绍了全体形态符号歧管的全态浮子理论的几种预期特性。特别是,我们提出了一个猜想,该猜想与Hitchin综合系统的全体形态浮子理论和非紧凑型卡拉比Yau的唐纳森 - 托马斯不变式3倍。更笼统地,我们猜想$ \ Mathcal {n} = 2 $ 4维量子场理论的BPS频谱可以从相应的Seiberg-Witten可集成系统的Holomorthic Floer理论中恢复。
We present several expected properties of the holomorphic Floer theory of a holomorphic symplectic manifold. In particular, we propose a conjecture relating holomorphic Floer theory of Hitchin integrable systems and Donaldson-Thomas invariants of non-compact Calabi-Yau 3-folds. More generally, we conjecture that the BPS spectrum of a $\mathcal{N}=2$ 4-dimensional quantum field theory can be recovered from the holomorphic Floer theory of the corresponding Seiberg-Witten integrable system.