论文标题

强大的空间多重测试通过借用相邻信息

Powerful Spatial Multiple Testing via Borrowing Neighboring Information

论文作者

Deng, Linsui, He, Kejun, Zhang, Xianyang

论文摘要

在空间信号的多个假设检验中通常会遇到簇效应。在本文中,我们提出了一种新方法,称为\ textIt {二维空间多重测试}(2D-SMT)过程,以控制错误的发现率(FDR),并通过利用邻居观测中编码的空间信息来提高检测能力。提出的方法提供了一种新的观点,即通过将信号模式和空间依赖性收集到辅助统计数据中来利用空间信息。当在感兴趣的位置的主要统计量和基于附近观测值构建的辅助统计量大于其相应的截止值时,2D-SMT拒绝零。 2D-SMT也可以与加权BH程序的不同变体结合使用,以进一步提高检测能力。开发了一种快速算法,以加速2D-SMT中最佳截止的搜索。从理论上讲,我们在弱空间依赖性下建立了2D-SMT的渐近FDR对照。广泛的数值实验表明,2D-SMT方法与各种加权BH程序相结合,实现了FDR和权力权衡竞争最具竞争力的表现。

Clustered effects are often encountered in multiple hypothesis testing of spatial signals. In this paper, we propose a new method, termed \textit{two-dimensional spatial multiple testing} (2d-SMT) procedure, to control the false discovery rate (FDR) and improve the detection power by exploiting the spatial information encoded in neighboring observations. The proposed method provides a novel perspective of utilizing spatial information by gathering signal patterns and spatial dependence into an auxiliary statistic. 2d-SMT rejects the null when a primary statistic at the location of interest and the auxiliary statistic constructed based on nearby observations are greater than their corresponding cutoffs. 2d-SMT can also be combined with different variants of the weighted BH procedures to improve the detection power further. A fast algorithm is developed to accelerate the search for optimal cutoffs in 2d-SMT. In theory, we establish the asymptotic FDR control of 2d-SMT under weak spatial dependence. Extensive numerical experiments demonstrate that the 2d-SMT method combined with various weighted BH procedures achieves the most competitive performance in FDR and power trade-off.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源